Fibrous adsorbents, such as activated carbon fibers (ACF) have acknowledged advantages of rapid adsorption rate and ease of modification compared with granular and powdered adsorbents. Based on the surface modification of lyocell-based ACF, we observed different surface characteristics of ACF samples with variation in the mixing ratio and impregnation time of H3PO4, NaCl, and KMnO4 solution. For an engineering application, we also explored the adsorption characteristics of thusproduced ACF samples onto volatile organic compounds (VOCs). Isothermal adsorption experiments were performed using toluene and benzene as adsorbates. Results indicate that both physical and chemical surface properties have an effect on the adsorption of volatile organic compounds (VOCs).
A study on indigenous diatoms was carried out at 10 sites from May 2014 to December 2016 in marine and freshwater in Korea. Seventeen species of diatoms are new to Korea and they are divided into 3 classes, 4 subclasses, 10 orders, 14 families, and 16 genera. The nomenclatures, references, dimensions, specimens examined, local habitat, distribution in Korea, and photograph are reported here. Seventeen species found in marine, freshwater, and brackish water showed species-specific habitats.
We report on the dispersion state of partially reduced graphene oxide (PRGO) in organic solvents, namely methyl ethyl ketone, ethyl acetate, methylene chloride, toluene, and xylene, by controlling the carbon to oxygen (C/O) atomic ratio of the PRGOs. A two-phase solvent exchange method is also proposed to transfer PRGO from water to an aprotic solvent, such as methyl ethyl ketone. We achieve relatively good dispersion in aprotic and non-polar solvents by controlling the C/O atomic ratio of the PRGOs and applying the two-phase solvent exchange method. There is an increase in the glass transition temperatures with the dispersion of PRGOs into amorphous polymers, in particular a 4.4°C increase for poly(methyl methacrylate) and 3.0°C increase for polycarbonate. Good dispersion of PRGO in a nonpolar polymer, such as linear low density polyethylene, is also obtained.
Many gravitational wave detectors are now being built or under operation throughout the world. In particular, LIGO has taken scientific data several times, although current sensitivity is not sufficient to detect the weak signals routinely. However, the sensitivities have been improving steadily over past years so that the real detection will take place in the near future. Data analysis is another important area in detecting the gravitational wave signal. We have carried out the basic research in order to implement data analysis software in Korea@home environment. We first studied the LIGO Science Collaboration Algorithm Library(LAL) software package, and extracted the module that can generate the virtual data of gravitational wave detector. Since burst sources such as merging binaries of neutron stars and black holes are likely to be detected first, we have concentrated on the simulation of such signals. This module can generate pure gravitational wave forms, noise suitable for LIGO, and combination of the signal and noise. In order to detect the gravitational signal embedded in the noisy data, we have written a simple program that employs 'matched filtering' method which is very effective in detecting the signal with known waveform. We found that this method works extremely well.
We have studied the nonlinear evolution of a magnetized disk of isothermal gas, which is sustained by its self-gravity. Our objective is to investigate how the Jeans, Parker, and convective instabilities compete with each other in structuring/de-structuring large scale condensations in such disk. The Poisson equation for the self-gravity has been solved with a fourth-order accurate Fourier method along with the Green function, and the MHD part has been handled by an isothermal TVD code. When large wavelength perturbations are applied, the combined action of the Jeans and Parker instabilities suppresses the development of the convection and forms a dense core of prolate shape in the mid-plane. Peripheral structures around it are filamentary. The low density filaments connect the dense core to the diffuse upper region. On the other hand, when small wavelength perturbations are applied, the disk develops into an equilibrium state which is reminiscent of the Mouschovias's 2-D non-linear equilibrium of the classical Parker instability under an externally given gravity.