검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.05 구독 인증기관·개인회원 무료
        Molten salt reactors have several advantages over conventional light water reactors. These include producing less nuclear waste, operating at higher power efficiency and inherent safety due to the low operating pressure. NaCl-MgCl2 eutectic salt is one of the candidates for the molten salt reactor coolant. However, because the salt is very hygroscopic, structural material corrosion occurs resulting in the high cost to maintain. To mitigate corrosion there have been many studies for the dehydration of the salt, especially focusing on the magnesium chloride. The reason is that the moisture adsorbed to the magnesium chloride undergoes hydrolysis over 200 degrees Celsius and decomposes to MgOHCl while the moisture associated with the NaCl is easily liberated during the heating procedure without chemical reaction. As the operating temperature of the molten salt is between 500 and 700 degrees Celsius, the MgOHCl is believed as the main cause for the structural corrosion. In this research, thermal dehydration of the salt with elemental Mg, for the NaCl-MgCl2 eutectic, was studied based on the previous dehydration methods and considering scalable and easy to handle. The MgOHCl was removed both through the thermal decomposition and the reduction by Mg metal. After the removal of MgOHCl, based on the difference between the freezing points and the density, the salt cooled down very slowly to ensure the separation between the purified salt and the disposals such as MgO and remaining Mg metals. The efficiency of the dehydration method was determined by the concentration of the MgOHCl. The concentration was determined by cyclic voltammetry and the result was compared with undehydrated salt and salt dehydrated thermally without the addition of Mg metal. To qualify and quantify the MgOHCl content through the cyclic voltammetry, it was necessary to observe the signal by adding MgOHCl to each sample. Based on the thermogravimetric analysis result of MgCl2· 6H2O, MgOHCl powder was formed through heating the MgCl2·6H2O.