This study incorporates the formation of carbon quantum dots (CQDs) via a hydrothermal approach, recording the first-time use of castor leaves as a natural precursor. The used precursor offers various benefits including novelty, abundance, elemental composition, and biocompatibility. CQDs were further characterized with multiple techniques including high-resolution transmission electron microscope (HR-TEM), X-ray photoelectron microscopy (XPS), X-ray diffraction (XRD), Fouriertransform infrared spectroscopy (FTIR), Raman spectroscopy, UV–visible spectroscopy, Zeta analysis, and optical spectroscopy. They are fundamentally composed of carbon (71.37%), nitrogen (3.91%), and oxygen (24.73%) and are nearly spherical, and uniformly distributed with an average diameter of 2.7 nm. They possess numerous interesting characteristics like broad excitation/emission bands, excitation-sensitive emission, marvelous photostability, reactivity, thermo-sensitivity, etc. A temperature sensor (thermal sensitivity of 0.58% C− 1) with repeatability and reversibility of results is also demonstrated. Additionally, they were found selective and sensitive to ions in aqueous solutions. So, they are also utilized as a fluorescent probe for metal ion ( Fe3+) sensing. The lowest limit of detection (LOD) value for the current metal ion sensor is 19.1 μM/L.
Nanomaterials (NMs) are gradually becoming pervasive in the modern world, entering every application for improving the quality of life. Multifaceted uses of NMs in curing diseases, biomedical instrumentation, bioimaging, drugs, and gene delivery, display devices, nanosensors, and biomarkers in several fields ranging from agriculture to industries, healthcare, and environment, have been well recognized. Carbon-based nanomaterials (CNMs) constitute a major type of NMs with broad-spectrum applications including their uses in agriculture. These are synthesized in large quantities via synthetic and biological approaches. Biological approaches are gaining appreciation and momentum, owing to the advantages associated with them, major being their environment friendly or ‘Green’ nature. This topical review focuses on the preparation of CNMs using natural resources, i.e., using the Green Nanotechnology. The up-to-date compilation presented here includes most of the popular green technological methods of producing the CNMs and their immediate uses as anticancer agents, in bio-labelling, as biosensors, in bio-remediation, in cell imaging, in fluorescent inks, and fluorescent dyes, as plant growth inducing agents, in nano-probes, in light-emitting devices and other applications. It is intended to update the reader with the state-of-the-art knowledge about the green technological methods for synthesizing CNMs, their uses, current trends, challenges, and future outlook on the topic.