Honey bee swarming is a natural phenomenon that occurs by changes of colony (i.e. population size and queen condition) and environment conditions. As cuticular hydrocarbons (CHCs) are known to be involved in the communication between honey bee nest-mates, we investigated and compared the CHC profiles of worker bees from individual colonies of 9-days before swarming (PPSC), a day before swarming (PSC), swarming (SG) and remaining (non-swarming) (RG). A total of 53 CHCs were identified by GC-MS, among which 11 compounds showed significantly differential expression patterns between swarming states. Before swarming (between PPSC and PSC), detection levels of 4 CHCs were significantly different, suggesting that production of some CHCs changed prior to swarming for swarming preparation. Six CHCs were deferentially produced between PSC and RG. The differential profiles of CHCs with respect to different swarming states are currently under investigation.
Honey bee swarming is a natural phenomenon that occurs when the colony encounters changes in the in-hive (i.e. population size and queen condition) and environmental conditions. To better understand the molecular basis of swarming, we conducted the transcriptomic profiles of worker bees between before swarming [pre-swarming colony (PSC)] and after swarming [swarming group (SG) and remaining group (RG)]. Based on the gene set enrichment analysis (GSEA), we predicted the biological processes associated with swarming. In addition, we analyzed the composition of cuticular hydrocarbons (CHCs) by gas chromatography-mass spectrometry and compared their profiles between different bee groups. GSEA results showed that there were a little differences between PSC and RG while many of the pathways related with metabolism and protein processing were down regulated in SG relative to PSC and RG. CHCs profiling revealed a similar CHCs composition between PSC and RG but some differences in CHCs composition (i.e. heneicosane, octacosane, octacosanol) were detected between SG and RG. These differences in gene pathway and CHC composition were discussed with respect to physiological changes and social communication.
Composite resins are developed as restorative materials to improve esthetics and mechanical properties. To improve the physical properties of resin material, resin filler have to be added. However, no imaging method is adopted for resin filler distribution. Optical coherence tomography (OCT) is a optical imaging technique to delineate microscopic structures within biological tissue. The OCT application to dental composites resin and its filler is not described yet. So, this new and advanced optical method is needed for clinical application for evaluation of dental composite resin. To analyze the spatial distribution of dental composite resin and to evaluate the resin restoration in cavity, frequency domain optical coherence tomography (FD-OCT) was used for their analysis. Resin restored tooth was prepared. For morphological observation, serially sectioned teeth, conventional X-ray taking and micro computed-tomography (CT) images were compared with OCT images. The experiment has done to evaluate the success of the resin restoration using 3 dimensional structure OCT image. In this research, OCT is evaluated as a new technique to image resin restoration. The evaluation of resin restored tooth was performed by OCT. Inappropriate restoration such as marginal adaptation, large porosities, internal integrity and poor contour could be detected. Resin filler also could be checked by OCT. The distribution, number, regularity and size of resin filler can be differentiated from several commercial products. Considering the characteristics of the OCT, it can be used to evaluate the defects of resin restoration, resin filler distribution, and internal integrity between resin material and tooth structure. The OCT can be considered to be a new and advanced method for the evaluation of resin restorations.
흡연 유무의 남성을 대상으로 뇌 회백질의 손상 유무를 파악 할 수 있는 확산텐서영상을 검사하여 영상을 획득 한 후 Tract-Based Spatial Statics(TBSS)방법으로 뇌 회백질 부위의 기저핵 신경섬유로의 비등방도 FA(fractional anisotropy)값을 측정 분석한 결과 모든 영역에서 흡연자가 비흡연자보다 비등방성 측정값이 낮게 관찰되었으며 FA값은 통계적으로 유의하였다. 본 연구의 측정한 FA결과 값으로 추측하자면 즉, 흡연이 뇌 회백질 기저핵의 모든 해부학적 미세 구조성 변화에 크게 영향을 미치며 신경 섬유로를 손상시키고 이와 관련된 기능적 이상에 영향을 준다고 할 수 있다.