검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2016.10 구독 인증기관·개인회원 무료
        CRISPR/Cas9-induced knock-out/-in can be occurred at specific locus in the genome by non-homologous end joining (NHEJ) or homology directed repair (HDR). Here, we demonstrate the targeted insertion into the specific loci of embryo fertilized by semen from transgenic cattle via CRISPR/Cas9 system. Recently, we published on the efficient generation of transgenic cattle using the DNA transposon system (Yum et al. Sci Rep. 2016 Jun 21;6:27185). In the study, eight transgenic cattle were born following transposon-mediated gene delivery system (Sleeping Beauty and Piggybac transposon system) via microinjection. In the analysis of their genome stability using next-generation sequencing, there was no significant difference in the number of genetic variants between transgenic and non-transgenic cattle. All the transgenic cattle have grown up to date (the oldest age: 33 months old, the youngest age: 15 months old) without any health issue. One of transgenic male cattle expressing GFP reached puberty and semen was collected. Over 200 frozen semen straws were produced and some were used for in vitro fertilization (IVF). On seven days after IVF, expression of GFP was observed at blastocyst stage and was seen in 80% of the embryos. Another application is to edit the GFP locus of the transgenic cattle because long-term and ubiquitous expression of transgene didn’t affect their health. In one cell stage embryos produced using GFP frozen-thawed semen, microinjection of sgRNA for GFP, Cas9, together with donor DNA that included RFP and homology arms to link the double-strand break of sgRNA target site into fertilized eggs resulted in expression of RFP. This indicated that the GFP locus of transgenic cattle shows potential candidates for stable insertion of the functional transgene. Knock-out/-in for editing GFP locus using CRISPR-Cas9 might be a valuable approach for the next generation of transgenic models by microinjection. In conclusion, we demonstrated P-112 that transgenic cattle via transposon system are healthy to date and germ-line competence was confirmed. The GFP locus will be used as the potential target site for future gene engineering via genome-editing technology. Finally, all those animals could be a valuable agricultural and veterinary science resource for studying the effects of gene manipulation on biomedical research and medicine. This work was supported by BK21 PLUS Program for Creative Veterinary Science and Seoul Milk Coop (SNU 550-20160004).
        2.
        2016.10 구독 인증기관·개인회원 무료
        The CRISPR/Cas9 system is proved to be a powerful tool for knock-out and knock-in in various species. By introducing genetic materials of two components (Cas9 and small guide (sg) RNA) into cells or pronuclear of the fertilized embryo, gene editing occurs. Some studies reported that efficiency of gene editing would be increased as Cas9 was integrated into cells or animals since Cas9 is indispensable in the CRISPR/Cas9 system. Accordingly, the production of Cas9 expressing cattle may provide the broadly used gene editing platform in cattle. For this study, Cas9 and RFP genes were cloned into PiggyBac (PB) transposon system. PB-Cas9-RFP and transposase were microinjected into 1436 in vitro fertilized embryos and 241 blastocysts were formed. Blastocysts with RFP expression accounting for 14.1% of total formed blastocysts were selected and transferred into 5 recipient cow. After gestation periods, four transgenic cattle were delivered without any veterinary assistance. From a transgenic cattle, ear skin tissue was collected for primary culture. On those primary cells, sgRNAs in DNA form for various genes such as PRNP, RB1 and BLG were transfected as 2ug of sgRNA per 5x105 cells using Nucleo factor system (Neon®, invitrogen, program#16). As expected, every group of each sgRNA delivered was confirmed to be mutated by T7E1assay. Those data demonstrated that for the first time, transgenic cattle with Cas9 expression were born, grown up to date and will be avaluable resource for genome-editing in cattle. This work was supported by BK21PLUS Program for Creative Veterinary Science and Seoul Milk Coop (SNU550-20160004).