검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Vertical takeoff and landing (VTOL) is a core feature of unmanned aerial vehicles (UAVs), which are commonly referred to as drones. In emerging smart logistics, drones are expected to play an increasingly important role as mobile platforms. Therefore, research on last-mile delivery using drones is on the rise. There is a growing trend toward providing drone delivery services, particularly among retailers that handle small and lightweight items. However, there is still a lack of research on a structural definition of the VTOL drone flight model for multi-point delivery service. This paper describes a VTOL drone flight route structure for a multi-drone delivery service using rotary-wing type VTOL drones. First, we briefly explore the factors to be considered when providing drone delivery services. Second, a VTOL drone flight route model is introduced using the idea of the nested graph. Based on the proposed model, we describe various time-related attributes for delivery services using drones and present corresponding calculation methods. Additionally, as an application of the drone route model and the time attributes, we comprehensively describe a simple example of the multi-drone delivery for first-come-first-served (FCFS) services.
        4,600원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Distribution and logistics industries contribute some of the biggest GDP(gross domestic product) in South Korea and the number of related companies are quarter of the total number of industries in the country. The number of retail tech companies are quickly increased due to the acceleration of the online and untact shopping trend. Furthermore, major distribution and logistics companies try to achieve integrated data management with the fulfillment process. In contrast, small and medium distribution companies still lack of the capacity and ability to develop digital innovation and smartization. Therefore, in this paper, a deep learning-based demand forecasting & recommendation model is proposed to improve business competitiveness. The proposed model is developed based on real sales transaction data to predict future demand for each product. The proposed model consists of six deep learning models, which are MLP(multi-layers perception), CNN(convolution neural network), RNN(recurrent neural network), LSTM(long short term memory), Conv1D-BiLSTM(convolution-long short term memory) for demand forecasting and collaborative filtering for the recommendation. Each model provides the best prediction result for each product and recommendation model can recommend best sales product among companies own sales list as well as competitor’s item list. The proposed demand forecasting model is expected to improve the competitiveness of the small and medium-sized distribution and logistics industry.
        4,500원