검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2014.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, the effects of precipitates and Mn-solute atoms on the recrystallization behavior of an Al-Mn alloy was studied using micro-Vickers hardness, electrical conductivity measurements and optical microscopy. Various thermo-mechanical processes were designed to investigate the different morphologies, and the solute concentration, of Mn in the matrix. The results indicate that the recrystallization temperature, TR and time, tR, are influenced by the amount of M-solute atoms in the matrix, and that the recrystallization microstructure is influenced by the amount of precipitates. Recrystallization in the Slow-Cooling specimen was rapid due to its low concentration of Mn-solute atoms, and the crystal-grain size was the smallest due to finely distributed precipitates. However, in the case of the No-Holding specimen, elongated grains were observed at the low annealing temperature and the largest recrystallized grains were observed at the high annealing temperatures (compared with Slow-Cooling and Base specimens) due to the high Mn-solute atoms in the matrix.
        4,000원
        2.
        2012.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Two types of nanoclusters, termed Cluster (1) and Cluster (2) here, both play an important role in the age-hardening behavior in Al-Mg-Si alloys. Small amounts of additions of Cu and Ag affect the formation of nanoclusters. Two exothermic peaks were clearly detected in differential scanning calorimetry(DSC) curves by means of peak separation by the Gaussian method in the base, Cu-added, Ag-added and Cu-Ag-added Al-Mg-Si alloys. The formation of nanoclusters in the initial stage of natural aging was suppressed in the Ag-added and Cu-Ag-added alloys, while the formation of nanoclusters was enhanced at an aging time longer than 259.2 ks(3 days) of natural aging with the addition Cu and Ag. The formation of nanoclusters while aging at 100˚C was accelerated in the Cu-added, Ag-added and Cu-Ag-added alloys due to the attractive interaction between the Cu and Ag atoms and the Mg atoms. The influence of additions of Cu and Ag on the clustering behavior during low-temperature aging was well characterized based on the interaction energies among solute atoms and on vacancies derived from the first-principle calculation of the full-potential Korrinaga-Kohn-Rostoker(FPKKR)-Green function method. The effects of low Cu and Ag additions on the formation of nanoclusters were also discussed based on the age-hardening phenomena.
        4,000원
        3.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of Al addition on the precipitation behavior of a binary Mg-Zn alloy was investigated based on thechanges in the morphology, distribution and element concentration of precipitates formed during aging treatment. The as-castMg-6.0 mass%Zn (Mg-6Zn) and Mg-6.0 mass%Zn-3.0 mass%Al (Al-added) were homogenized at 613K for 48h and at 673Kfor 12h; they were then solid solution treated at 673K for 0.5 h and 1 h, respectively. The Mg-6Zn and Al-added alloys wereaged at 403 K and 433K. The peak hardness of the Al-added alloy was higher than that of the Mg-6Zn alloy at each agingtemperature. Rod-like, plate-like, blocky, and lath-like precipitates were observed in the Al-added alloy aged at 433K for230.4ks, although the rod-like and plate-like precipitates were observed in the TEM microstructure of the Mg-6Zn alloy agedat 433K for 360 ks. Moreover, the precipitates in the Al-added alloy were refined and densely distributed compared with thosein the Mg-6Zn alloy. The Cliff-Lorimer plots obtained by the EDS analysis of the rod-like and plate-like phases in theAl-added alloy peak aged at 433K for 230.4ks were examined. It was confirmed that the phases had higher concentrationof solute Al atom than was present in the phases, indicating that the properties of precipitates can be changed by Al addition.
        4,000원