검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ammonium (NH4 +) serves as a nitrogen source, but its elevated levels can hinder plant growth and production. Excess NH4 + with α-ketoglutarate is assimilated into glutamate, a precursor of proline and glutathione (GSH). This study aimed to investigate the effects of excessive NH4 + on the regulation of proline and GSH synthesis. Detached leaves from oilseed rape (Brassica napus L.) were fed with 0, 50, 100, 500, and 1000 mM NH4Cl for 16 h. As the NH4 + concentrations increased, the leaves exhibited progressive wilting and yellowing. Furthermore, total carotenoid and chlorophyll concentrations declined in response to all NH4 + treatments, with the lowest levels observed in 1000 mM NH4 + treatment. Hydrogen peroxide (H2O2) concentration showed a minor increase at low NH4 + concentration (50 and 100 mM) treatments but a significant increase at high NH4 + (500 and 1000 mM), which was consistent with the localization of H2O2. Amino acid concentrations increased with increasing in NH4 + concentration, while the protein concentration displayed the opposite trend. Proline and cysteine concentrations exhibited a gradual increase in response to increasing NH4 + concentrations. However, GSH concentrations rose only in the 50 mM NH4 + treatment and decreased in the 500 and 1000 mM NH4 + treatments. These results indicate that excessive NH4 + is primarily assimilated into proline, while GSH synthesis is adversely affected.
        4,000원
        2.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sulfur is an essential element in plants, including amino acids, vitamin synthesis, and acting as an antioxidant. However, the interaction between endogenous sulfur and proline synthesis has not been yet fully documented. White clover (Trifolium repens L.) is known as a species highly sensitive to sulfate supply. Therefore, this study aimed to elucidate the role of sulfur in regulating proline metabolism in relation to ammonia detoxification and hydrogen peroxide (H2O2) accumulation in white clover. The detached leaves of white clover were immersed in solution containing different concentration of sulfate (0, 10, 100, and 1000 mM MgSO4). As MgSO4 concentrations were increased, the concentration of H2O2 increased up to 2.5-fold compared to control, accompanied with H2O2 detection in leaves. Amino acid concentrations significantly increased only at higher levels (100 and 1000 mM MgSO4). No significant difference was observed in protein concentration. Proline and Δ1-pyrroline-5-carboxylate (P5C) concentrations slightly decreased at 10 and 100 mM MgSO4 treatments, whereas it rapidly increased over 1.9-fold at 1000 mM MgSO4 treatment. Ammonia concentrations gradually increased up to 8.6-fold. These results indicate that exogenous sulfur levels are closely related to H2O2 and ammonia synthesis but affect proline biosynthesis only at a higher level.
        4,000원