To understand the detrimental effects of triclosan on Java medaka (Oryzias javanicus) embryos, fertilized embryos were exposed to different concentrations (1, 10, 50, 100, 200, 400, 600, 800, and 1,000 μg l-1) of triclosan until hatching. Then, we examined the survival rate and developmental parameters as well as alterations in antioxidant constituents and DNA damage markers. The results showed dose-dependent mortality, hatching delays, and developmental abnormalities in the embryos. Additionally, there were significant increases in oxidative stress parameters and antioxidant responses, along with elevated DNA damage. These findings suggest that sublethal concentrations of triclosan induce toxic effects through oxidative stress on Java medaka embryos, as evidenced by changes in in vivo parameters and biochemical constituents.
In this research, the marine medaka Oryzias javanicus underwent a 96 h exposure to two concentrations of the red tide dinoflagellate Karenia mikimotoi (1,000 and 5,000 cells mL-1), and the temporal variations in biochemical responses related to antioxidant and immunity parameters were assessed in the liver tissue. The study revealed a significant increase in ichthyotoxicity with elevated cell concentrations of K. mikimotoi, especially evident at 96 h in marine medaka exposed to 5,000 cells mL-1. At 1,000 cells mL-1 of K. mikimotoi, the opercular respiratory rate showed a significant increase, whereas exposure to 5,000 cells mL-1 resulted in a lowered rate. The intracellular malondialdehyde content was significantly elevated in response to both cell concentrations at 96 h. Regarding glutathione content, levels were significantly increased by exposure to both cell concentrations. Catalase and superoxide dismutase enzymatic activities experienced an increase at 1,000 cells mL-1 of K. mikimotoi, while their activities were reduced at 5,000 cells mL-1 at 96 h. The analysis of two immunity parameters, alternative complement pathway and lysozyme, demonstrated significantly reduced activities in the liver tissue exposed to 5,000 cells mL-1 of K. mikimotoi. These findings aim to enhance the understanding of K. mikimotoi toxicity in marine fish by offering insights into biochemical responses associated with harmful algal blooms.
In this study, the marine medaka Oryzias javanicus was exposed to two concentrations of non-toxin-producing red tide dinoflagellate C. polykrikoides (1,000 and 2,000 cells ml-1) for 96 h, and the time-course biochemical responses of antioxidant and immunity parameters were analyzed in the liver tissue. Significant ichthyotoxicity with increasing cell concentrations of C. polykrikoides and exposure period was observed for 96 h. Opercular respiratory rate was lowered in marine medaka exposed to 2,000 cells ml-1 of C. polykrikoides. Intracellular malondialdehyde (MDA) content significantly elevated in response to both cell concentrations. In the case of glutathione (GSH) content, the levels were significantly elevated by 1,000 cells ml-1 of C. polykrikoides, but the contents significantly depleted upon exposure to 2,000 cells ml-1 of C. polykrikoides. Similarly, enzymatic activities of catalase (CAT) and superoxide dismutase (SOD) were increased by 1,000 cells ml-1 of C. polykrikoides, whereas their activities were lowered by 2,000 cells ml-1 of C. polykrikoides. Analysis of the two immunity parameters, alternative complement pathway and lysozyme, showed significantly lowered activities in 2,000 cells ml-1 of C. polykrikoides-exposed liver tissue. These biochemical effects of C. polykrikoides on marine medaka would be helpful for understanding its acute effects in marine fish.