Uranium-235, used in nuclear power generation, produces a lot of radioactive waste. Among radioactive waste nuclides, I-129 is problematic due to its long half-life (1.57×107 y) with high mobility in the environment. It should be captured and immobilized into a geological disposal environment through a stable waste form. In this study, various additives including Al, Bi, Pb, V, Mo and W were added to silver tellurite glass to prepare a matrix for immobilizing iodine, and its thermal and leaching properties were evaluated. To prepare glass, the glass precursor mixture was placed in alumina crucibles and heated at 800°C for 1 h. Except for aluminum, there was no significant loss of constituent elements. The loading of iodine in the matrix was approximately 11-15% by weigh, excluding oxygen. The normalized releases of all the elements obtained by PCT-A were below the order of 10-1 g/m2, which satisfies US regulation (2 g/m2). Differential scanning calorimetry was performed to evaluate the thermal properties of the glass samples. The glass transition temperature (Tg) increased by adding such as V2O5, MoO3, or WO3. The similar relative electrostatic field values of V2O5, MoO3, and WO3 could provide sufficient electro static field to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M = V, Mo, W) links. The addition of MoO3 or WO3 in the silver tellurite glass system increased glass transition temperature (Tg) and crystallization temperature (Tc) while maintaining the glass stability.
Chrysanthemum white rust, caused by Puccinia horiana, is one of the most destructive fungal diseases in chrysanthemum cultivation worldwide. For increasing efficiency of resistant breeding, molecular markers linked to chrysanthemum white rust resistance gene were developed in pseudo F1 cross population between ‘Puma White’ as susceptible and ‘Dancer’ as resistant using bulked segregant analysis (BSA). Of 280 RAPD primers (Operon 10 mer), 18 primers found to be polymorphic. After screening of these primers in 20 individual lines, only OPI-13520 was selected as closely linked marker to white rust disease resistance. Based on correspondence between phenotypic resistant level and marker in 187 segregation population, the genetic distance between white rust resistance gene and OPI-13520 marker assumed to be 3.8 cM. For OPI-13520 marker conversion into sequence characterized amplified region (SCAR) marker, the amplified fragment of OPI-13520 was purified, cloned and sequenced. Based on the DNA sequence of OPI-13520, SCAR maker was generated and verified in 20 individual lines used in BSA-RAPD.The results showed SCAR marker could be used to identify white rust resistance in chrysanthemum.