검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        1996.10 KCI 등재 서비스 종료(열람 제한)
        The pure compound chloromethanes; methyl chloride, methylene chloride, chloroform and carbon tetrachloride were used as a model of chlorocarbon system with Cl/H ratio to investigate thermal stability and hydrodechlorination process of carbon tetrachloride under excess hydrogen atmosphere. The parent thermal stability on basis of temperature required for 99% destruction at 1 second reaction time was evaluated as 875℃ for CH3Cl, 780℃ for CH2Cl2, 675℃ for CHCl3, and 635℃ for CCl4. Chloroform was thermally less stable than CCl4, at fairly low temperatures (<570℃). The decomposition of CCl4, became more sensitive to increasing temperature, and CCl4 was degraded easier than CHCl3 at above 570℃. The number and quantity of chlorinated products decreases with increasing temperature for the product distribution of CCl4 decomposition reaction system. Formation of non-chlorinated hydrocarbons such as CH4, C2H4 and C2H6 increased as the temperature rise and particularly small amount of methyl chloride was observed above 850℃ in CCl4/H2 reaction system. The less chlorinated products are more stable, with methyl chloride the most stable chlorocarbon in this reaction system.