HA (hydroxyapatite)/β-TCP (tricalcium phosphate) biomaterial (BCP; biphasic calcium phosphate) is widely used as bone cement or scaffolds material due to its superior biocompatibility. Furthermore, NH4HCO3 as a space holder (SH) has been used to evaluate feasibility assessment of porous structured BCP as bone scaffolds. In this study, using a spark plasma sintering (SPS) process at 393K and 1373K under 20MPa load, porous HA/β-TCP biomaterials were successfully fabricated using HA/β-TCP powders with 10~30 wt% SH, TiH2 as a foaming agent, and MgO powder as a binder. The effect of SH content on the pore size and distribution of the BCP biomaterial was observed by scanning electron microscopy (SEM) and a microfocus X-ray computer tomography system (SMX-225CT). The microstructure observations revealed that the volume fraction of the pores increased with increasing SH content and that rough pores were successfully fabricated by adding SH. Accordingly, the cell viabilities of BCP biomaterials were improved with increasing SH content. And, good biological properties were shown after assessment using Hanks balanced salt solution (HBSS).
The effect of heat treatment on the microstructure and mechanical properties of cast Ti-6%Al-4%V alloy was investigated. Heat treatment of cast Ti-6Al-4V alloy was conducted by solution treatment at 950 oC for 30 min; this was followed by water quenching and then aging at 550 oC for 1 to 1440 min. The highest hardness of the heat-treated specimens was obtained by solution treatment and subsequent aging for 5 min due to precipitates of fine α that formed from retained β phase. The tensile strength of this alloy increased without dramatic decrease of the ductility due to microstructural refinement resulting from the decomposition of α' martensite into fine α and β phases, and also due to the fine α phase formed from the retained β phase by aging treatment for 5 min. In addition, this strengthening might be caused by the transformation induced plasticity (TRIP) effect, which is a strain-induced martensite transformation from the retained β phase during deformation, and which occurs even after aging treatment at 550 oC for 5 min.