검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2020.12 구독 인증기관 무료, 개인회원 유료
        Excessive intake of sodium caused by high salt diet promotes the expression of inflammatory cytokines and differentiation of helper T cells resulting in inflammatory responses. High-glucose diet also contributes to the pathogenesis of periodontitis by inducing changes in the oral microbiome and reducing salivation. However, the effect of a high-salt and glucose diet (HSGD) on the prognosis of periodontitis remains unclear. In this study, a rat model of experimental periodontitis was established by periodic insertion of absorbable sutures containing Porphyromonas gingivalis and Fusobacterium nucleatum strains into the right gingival sulcus to analyze the effect of HSGD on the incidence and progression of periodontitis. The alveolar bone heights (ABH) was measured with microcomputed tomography imaging of the HSGD- and general diet (GD)-treated groups. The right ABH was significantly decreased compared to the left in both groups at 4 weeks after induction of inflammation; however, no significant difference was noted between the groups. Notably, the ABH in the HSGD-treated group was significantly decreased at 8 weeks after induction of inflammation, whereas in the GD-treated group, an increase in the ABH was observed; a significant difference of the ABH was noted between the two groups (p < 0.05). At 12 weeks, recovery of the alveolar bone was observed in both groups, with no significant differences in ABH between the two groups. These findings indicate that the intake of excessive sodium attenuates the recovery rate of the alveolar bone even after the local infectant is removed. In addition, this study demonstrates the use of HSGD in establishing a new animal model of periodontitis.
        4,000원
        2.
        2020.03 구독 인증기관 무료, 개인회원 유료
        The fruit of Chaenomeles sinensis (Thouin) Koehne (Chaenomelis Fructus) known as “Mo-Gua” in Korea has been commonly used in traditional medicine to treat inflammatory diseases, such as sore throat. However, its effect on bone metabolism has not been elucidated yet. Here, we examined the effect of Chaenomelis Fructus ethanol extract (CFE) on receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated osteoclast differentiation and formation. CF-E considerably inhibited osteoclast differentiation and tartrate-resistant acid phosphatase-positive multinuclear cell formation from bone marrow-derived macrophages and osteoclast precursor cells in a dose-dependent manner. In addition, the formation of actin rings and resorption pits were significantly suppressed in CF-E-treated osteoclasts as compared with the findings in non-treated control cells. Consistent with these phenotypic inhibitory results, the expressions of osteoclast differentiation marker genes (Acp5, Atp6v0d2 , Oscar, CtsK, and Tm7sf4) and Nfatc1 , a pivotal transcription factor for osteoclastogenesis, were markedly decreased by CF-E treatment. The inhibitory effect of CF-E on RANKL-induced osteoclastogenesis was associated with the suppression of NFATc1 expression, not by regulation of mitogen-activated protein kinases and NF-κB activation but by the inactivation of phospholipase C gamma 1 and 2. These results indicate that CF-E has an inhibitory effect on osteoclast differentiation and formation, and they suggest the possibility of CF-E as a traditional therapeutic agent against bone-resorptive diseases, such as osteoporosis, rheumatoid arthritis, and periodontitis.
        4,000원
        3.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study aimed to verify the effects of DFO on PDL cells, with particular emphasis on focusing on osteoblastic differentiation. Its mechanisms related to heme oxygenase-1 (HO-1) pathway were also analyzed. DFO increased the expression of HO-1 and early osteoblastic differentiation markers, such as alkaline phosphatase (ALP) and bone sialoprotein (BSP). DFO upregulated heme oxygenase-1. Treatment with HO-1 siRNA blocked the DFO-stimulated osteoblastic differentiation and HO-1 expression. The NF-kB inhibitor pyrrolidine dithiocarbamate, phosphatidylinositol 3-kinase inhibitor Wortmannin, and p38 MAPK inhibitor U0126 blocked the effects of DFO on HO-1 expression and osteoblastic differentiation in PDL cells. Collectively, these data suggest that DFO promotes osteoblastic differentiation and induces the expression of defense protein HO-1 probably via PI3K, p38 MAPK, and NF-kB signalling pathways in PDL cells.
        4,000원