In this study, the spray characteristics of blending fuel with diesel fuel and high viscosity biodiesel fuel was investigated. The research was performed for the effect on biodiesel fuel blending ratio and injection pressure for the spray behavior. The experimental process of spray injection was analyzed with LDPAlaser diffraction particle analyzer). In addition, spray atomization characteristics were researched with SMD(Sauter mean diameter) and droplet distribution on various injection pressure conditions. Fuel containing high viscosity biodiesel fuel has some different spray behaviors on account of the viscosity and surface tension. Though this experimental result, we found that the increase of injection pressure enables SMD to get smaller, but the increase of blending ratio makes SMD larger.
The potential for biodiesel to replace diesel has been explored as an alternative fuel for naturally aspirated indirect injection diesel engines. Overall biodiesel smoke emissions were significantly reduced compared to diesel fuel, which was approximately 36% lower at 2000 rpm, peak load conditions. And torque, power and brake energy consumption did not show much difference. However, compared to diesel fuel, NOx emissions from biodiesel have increased. To combat this problem, an EGR(exhaust gas recirculation) method has been applied to reduce NOx emissions. It was confirmed that simultaneous reduction of NOx and smoke was confirmed by cooling EGR method(10~15%) and biodiesel(20 vol%).
Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engines are recognized as main causes of the air pollution. CRDI (common rail direct injection) diesel engine is widely used for the sake of minimization on exhaust emission. Because biodiesel fuel is a renewable and alternative fuel for diesel engine, its usability is expanded. An commercial CRDI diesel engine used to commercial vehicle was fueled with diesel fuel and 5% biodiesel blended fuel (BDF 5%) with city mode in excess of 300 hours. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. To check the engine parts (valve, injector), the engine was inspected after test. It was concluded that there was no unusual deterioration of the engine, or any unusual changes in engine power and exhaust emissions in spite of operation of 300 hours with BDF 5%.
Biodiesel as alternative energy source of the traditional petroleum fuels has increased interest, because environmental pollution based exhaust emissions from vehicle became serious. The advantage of biodiesel produced from esterification of vegetable and animal oils can be used without the modification of existing diesel engine, but glycerin is generated by production process. In this study, the usability of non-esterification biodiesel as an alternative fuel was investigated in a indirect injection diesel engine. The non-esterification biodiesel has not generated glycerin in esterification process and reduced the 20 percent of cost because it has not used methanol in the production process. Experiments were conducted by using the 5, 10 and 20 percentage of biodiesel and 4 and 8 percentage of biodiesel with 1 and 2 percentage of WDP in baseline diesel fuel. The smoke emission of biodiesel was reduced in comparison with diesel fuel, but power, torque and brake specific energy consumption was similar to diesel fuel.