Low-loaded (1–5 wt%) platinum on carbon-based electrocatalysts (l-Pt/C) for the oxygen reduction reaction (ORR) has garnered attention as a promising approach to advancing fuel cell commercialization. Carbon materials, known for their morphological diversity, high specific surface area, ease of doping, cost-effectiveness, and high electrical conductivity, are widely used as supports for l-Pt/C catalysts. This review provides a comprehensive overview of recent progress in carbonbased l-Pt/C catalysts, focusing on three major strategies: modulating pore structure, utilizing the Pt size effect, and introducing novel Pt active sites. Each strategy is detailed, highlighting its principles, characteristics, and limitations with illustrative examples. Finally, we discuss and offer guidance for future research perspectives on highly active l-Pt/C catalysts for ORR.