The dimensioning machine installed in the hot cell has been used for 20 years. It has been used for a long time so it was often malfunction due to aging and radiation. In addition, some parts of apparatus were discontinued and there were a lot of problems in maintenance and repair. In the old measuring system, the operator’s subjectivity was much involved. The process of control the focal length (distance between lens and specimen) by operator’s sense is a good example. The existing dimensioning machine was the Kh-7700 of Hirox Co., Ltd. As the equipment had been used for a longtime, additional utilities such as jigs, lighting module and servo motors have been customized and used. The same company’s apparatus was selected for the reasons that it did not need to manufacture a new utility so it could save the cost of radioactive waste disposal for existing utilities and its radiation resistance which has been used for 20 years in radiation environment. Lighting, standing, stage, controllers, cables and so on had been customized to provide remote control in hot cell. The installation was completed in March of this year in hot cell and has been successfully used until now. Through the improvement of dimensioning machine, an auto-focusing and multi-focusing were available. Therefore, they made it possible to produce high quality data and improve the accuracy of data. And this research could be a good example of how hot cell devices can be built and customized to achieve remote control.
Recently, it is being carried out the project to evaluate the properties of materials harvested from nuclear reactor after the decommissioning of Kori Unit 1. However, it is not sufficient adequate machining equipment and remote machining technique to perform the projects for evaluation of materials harvested from nuclear reactor. Thus, it is required to develop the remote machining technique in hotcell to evaluate the mechanical properties of nuclear reactor materials. The machining technique should be performed inside a hotcell to evaluate mechanical properties of materials harvested from nuclear reactor and is essential to prevent radiation exposure of workers. Also, it is essential to design the apparatus and develop the machining process so that it can be operated with a manipulator and minimize contamination in hotcell. In this research, development of remote specimen machining technique in hotcell such as machining apparatus, technique and process for compact tension specimens of material harvested from nuclear reactor are described. Remote machining technique will be useful in specimen machining to evaluate changes in mechanical properties of materials harvested in high-radioactive reactor. Also, it is expected that various types of specimens can be machining by applying the developed machining technique in the future.