검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2023.11 구독 인증기관·개인회원 무료
        In Korea, most temporary storage facilities for spent nuclear fuel are nearing saturation. As an alternative to this, the 2nd basic plan for high-level radioactive waste management specified the operation plan of dry interim storage facility. Meanwhile, the NSSC No. 2021-19 stipulates that it is necessary to evaluate the possibility and potential effect of accident before operating interim storage facility. Therefore, this study analyzed the categories of accident scenarios that may occur in dry storage facility as part of prior research on this. We investigated the case of categorization of dry storage facility accident scenarios of IAEA, NRC, KAREI, and KINS. The IAEA presented accident scenarios that could occur in on-site dry storage facility operated with silo and cask method. NRC has classified accident scenarios in dry storage facility and estimated the probability of accidents for each. KAERI and KINS selected major accident scenarios and analyzed the processes for each, in preparation for the introduction of dry storage facility in Korea in the future. Overall, a total of 10 accident scenarios were considered, and the scenarios considered by each institution were different. Among 10 scenarios, cask drop and aircraft collision were included in the categorization of most institutions. The results of this study can be used as basic data for cataloging accidents subject to safety evaluation when introducing dry interim storage facility in Korea in the future.
        3.
        2023.05 구독 인증기관·개인회원 무료
        In Korea, the construction of dry storage facilities for spent nuclear fuel is being promoted through the 2nd basic plan for high-level radioactive waste management. When operating dry storage facilities, exposure dose assessment for workers should be performed, and for this, exposure scenarios based on work procedures should be derived prior. However, the dry storage method has not yet been sufficiently established in Korea, so the work procedure has not been established. Therefore, research is needed to apply it domestically based on the analysis of spent nuclear fuel management methods in major overseas leading countries. In this study, the procedure for receiving and storing spent nuclear fuel in a concrete overpack-based storage facility was analyzed. Among the various spent nuclear fuel management systems, the metal overpack-based HI-STAR 100 system and the concrete overpackbased HI-STORM 100 system are quite common methods in the United States. Therefore, in this study, work procedures were analyzed based on each final safety analysis report. First, the HI-STAR 100 overpack enters the facility and is placed in the transfer area. Remove the impact limiter of the overpack and install the alignment device on the top of the overpack. Place the HI-TRAC, an on-site transfer device, on top of the alignment unit and remove the lids of the two devices to insert the canister into the HI-TRAC. When the canister transfer is complete, reseat the lid to seal it, and disconnect the HI-TRAC from the HI-STAR 100. Raise the canister-loaded HI-TRAC over the alignment device on the top of the HI-STORM 100 overpack and remove the lids of the two devices that are in contact. Insert the canister into the HI-STORM 100 and reseat the lid. The HI-STORM 100 loaded with spent nuclear fuel is transferred to the designated storage area. In this study, the procedure for receiving and storing spent nuclear fuel in a concrete overpack-based storage facility was analyzed. The main procedure was the transfer of canisters between overpacks, and it was confirmed that HI-TRAC was used in the work procedure. The results of this study can be used as basic data for evaluating the exposure dose of operating workers for the construction of dry storage facilities in Korea.
        4.
        2023.05 구독 인증기관·개인회원 무료
        After Fukushima nuclear power plant accident in 2011, Concerns about accident of spent fuel pool increase. In Korea, the time of saturation of spent fuel pool is coming, but regulatory measures and safety evaluation are insufficient when occurring spent fuel pool accident. Thus, it is necessary to review of spent fuel pool accident in foreign countries to establish regulatory measures and safety evaluation of spent fuel pool accident suitable for domestic spent fuel pool. Therefore, we reviewed spent fuel pool accident that occurred at Fukushima Unit 4, SONGS Unit 2 and PAKS. In Japan, spent fuel pool accident occurred at Fukushima NPP in 2011. Tsunami was cause of the accident. Station Black Out occurred at Fukushima NPP and Emergency Diesel Generator lost their functions due to Tsunami. As a result, Loss of cooling happened in spent fuel pool at Fukushima NPP. For Unit 4, wall of spent fuel pool in Unit 4 was damaged due to hydrogen explosive, so loss of coolant in spent fuel pool of Unit 4 occurred. After the accident, the temperature of spent fuel pool increases to 75°C, but there was no damage to the spent fuel. In USA, spent fuel pool accident occurred at SONGS Unit 2 in 2013. The debris of nearby ocean is cause of the accident. The debris entered the system through a damaged Salt Water Cooling pump suction strainer. The debris obstructed flow through the Component Cooling Water heat exchanger and operation of Salt Water Cooling. The maximum spent fuel pool temperature during this event was 25.6°C. It was a value that satisfied the technical specifications of the SONGS NPP. In Ukraine, spent fuel pool accident occurred at PAKS in 2003. Unintentionally opened valve of cleaning tank is cause of the accident. Loss of coolant occurred in spent fuel pool of PAKS. Due to loss of coolant, spent fuels were exposed to the vapor state atmosphere, and oxidation occurred in the cladding tube of the spent fuel that rose to 1,400°C. In this study, Review of spent fuel pool accident in major foreign countries was conducted as basic studies for establishing regulatory measures and safety evaluation of spent fuel pool in Korea. Causes of each accident were different by structure of spent fuel pools. Result of this study will be contributed to establish safety measures of spent fuel pool accident suitable for domestic spent fuel pool facility.