검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hydrothermal and ultrasonic processes were used in this study to synthesize a single-atom Cu anchored on t-BaTiO3. The resulting material effectively employs vibration energy for the piezoelectric (PE) catalytic degradation of pollutants. The phase and microstructure of the sample were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM), and it was found that the sample had a tetragonal perovskite structure with uniform grain size. The nanomaterial achieved a considerable increase in tetracycline degradation rate (approximately 95 % within 7 h) when subjected to mechanical vibration. In contrast, pure BaTiO3 demonstrated a degradation rate of 56.7 %. A significant number of piezoinduced negative charge carriers, electrons, can leak out to the Cu-doped BaTiO3 interface due to Cu’s exceptional conductivity. As a result, a single-atom Cu catalyst can facilitate the separation of these electrons, resulting in synergistic catalysis. By demonstrating a viable approach for improving ultrasonic and PE materials this research highlights the benefits of combining ultrasonic technology and the PE effect.
        4,000원
        2.
        2016.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we used activated carbon(AC) as a carbon source, along with zeolite, to prepare spherical carbons using sucrose, starch and phenolic resin(PR) as binder material. The physicochemical characteristics of the three samples(AZ4P, AZ6P and AZ8P) were examined by BET, XRD, SEM, EDX, H2S/NH3 gas adsorption, compressive strength and ignition test techniques. Through comparative analysis of the compressive strength and ignition test results the AZ8P sample was found to have the best hardness and the highest temperature resistance capacity. After activation, the AZ8P sample had the best H2S adsorption capacity, and AZ6P was the most suitable for the adsorption of ammonia.
        4,000원
        3.
        2015.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        SnS-TiO2 nanocomposites are synthesized using simple, cheap, and less toxic SnCl2 as the tin (II) precursor. The prepared nanoparticles are characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectra (DRS). The XRD and TEM results indicate that the prepared product has SnS nanoparticles and a grain diameter of 30 nm. The DRS demonstrate that SnS-TiO2 possesses the absorption profile across the entire visible light region. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and photocatalytic effect increase with the modified SnS. Excellent catalytic degradation of Texbrite BA-L (TBA) solution is observed using the SnS-TiO2 composites under visible light irradiation. It is proposed that both the strong visible light absorption and the multiple exciton excitations contribute to the high visible light photocatalytic activity.
        4,000원