Lotus (Nelumbo nucifera Gaertn.) is an economically important aquatic ornamental herb with multiple uses, including food, tea, natural pigments, and/or healthcare product. The objective of this study was to evaluate the physicochemical properties and antioxidant potential of lotus sprouts grown in three media: sprouting machine (LSSG), soil (LSSC), and mud (LSMC). The longest sprout was obtained in LSMC (4.79 and 26.79 ㎝) followed by LSSC (1.95 and 5.4 ㎝), and LSSG (0.60 and 2.85 ㎝) at 5 and 10 days, respectively. Higher amounts of total free amino acids were found in cotyledons (33.96, 21.45, and 38.90 ㎎/g) than in hypocotyls (15.77, 7.90, and 15.29 ㎎/g ) for LSSG, LSSC, and LSMC, respectively. The ratios of total essential to total non-essential amino acids were higher in hypocotyls (0.36, 0.31, and 0.46) than in cotyledons (0.34, 0.25, and 0.40), respectively. Similarly, the total polyphenol content of the hypocotyl of LSMC (50.33 ㎍ GAE/g) was the highest and that of the husk of LSSG (24.08 ㎍ GAE/g) was the lowest. Overall, the antioxidant potential of hypocotyl was higher than that of husk and cotyledon. The results indicated that the lotus sprouts grown in mud could be a good source of nutritional and natural antioxidants.
Seedlings of two rice genotyopes, cvs. Ilpumbyeo and Gancheokbyeo, were exposed to 0, 50 and 100 mM NaCl in nutrient solution for nine days. Plants were collected at the interval of 3 days and organic and inorganic solutes in leaves and roots and antioxidative enzyme activity in leaves were determined. Under salinity, the accumulation of soluble sugars occurred considerably in the older leaves of stressed seedlings compared to younger leaves and roots. The endogenous Na+ contents markedly increased at higher NaCl concentration in leaves and roots of seedlings, though it was higher accumulated in roots. Salinity resulted in an excessive proline accumulation in the stressed plants. A more pronounced increase was observed in Gancheokbyeo leaves. SOD activity in Impumbyeo cannot found any remarkable change, whereas, in Gancheokbyeo, its activity was rapidly decreased. CAT and POD activities increased with an increase in NaCl concentration in both genotypes. In summary, the high capacity of rice seedlings to overcome an unfavorable growth condition such salt stress appears to be related to an adequate partition of organic solutes between shoots and roots and to changes in absorption, transport and re-translocation of salts.