Complexation of actinides and lanthanides with carboxylic organic ligands is known to facilitate migration of radionuclides from deep geological disposal systems of spent nuclear fuel. In order to examine the ligand-dependent structures of trivalent actinides and lanthanides, a series of Eu(III)-aliphatic dicarboxylate compounds, Eu2(oxalate)3(H2O)6, Eu2(malonate)3(H2O)6, and Eu2(succinate)3(H2O)2, were synthesized and characterized by using X-ray crystallography and time-resolved laser fluorescence spectroscopy. Powder X-ray diffraction results captured the transition of the coordination modes of aliphatic dicarboxylate ligands from side-on to end-on binding as the carbon chain length increases. This transition is illustrated in malonate bindings involving a combination of side-on and end-on modes. Strongly enhanced luminescence of these solid compounds, especially on the hypersensitive peak, indicates a low site symmetry of these solid compounds. Luminescence lifetimes of the compounds were measured to be increased, which is ascribed to the displacement of water molecules in the innersphere of Eu center upon bindings of the organic ligands. The numbers of remaining bound water molecules estimated from the increased luminescence lifetimes were in good agreement with crystal structures. The excitation-emission matrix spectra of these crystalline polymers suggest that oxalate ligands promote the sensitized luminescence of Eu(III), especially in the UV region. In the case of malonate and succinate ligands, charge transfer occurs in the opposite direction from Eu(III) to the ligands under UV excitation, resulting in weaker luminescence.