Cabbage head splitting can greatly affect both the quality and commercial value of cabbage (Brassica oleracea). To detect the genetic basis of head-splitting resistance, a genetic map was constructed using an F2 population derived by crossing “748” (head-splitting-resistant inbred line) and “747” (head-splitting-susceptible inbred line). The map spans 830.9cM and comprises 270 markers distributed in nine linkage groups, which correspond to the nine chromosomes of B. oleracea. The average distance between adjacent markers was 3.6cM. A total of six quantitative trait loci (QTLs) conferring resistance to head splittingwere detected in chromosome 2, 4, and 6. Two QTLs, SPL-2-1 and SPL-4-1, on chromosomes 2 and 4, respectively, were detected in the experiments over 2 years, suggesting that these two potential loci were important for governing the head-splitting resistance trait. Markers BRPGM0676 and BRMS137, which were tightly linked with head-splitting resistance, were detected in the conserved QTL SPL-2-1 region using bulked segregant analysis. Synteny analysis showed that SPL-2-1 was anchored to a 3.18Mb genomic region of the B. oleracea genome, homologous to crucifer ancestral karyotype E block in chromosome 1 of Arabidopsis thaliana. Moreover, using a field emission scanning electron microscope, significant differences were observed between the two parental lines in terms of cell structures. Line “747” had thinner cell wall, lower cell density, larger cell size, and anomalous cell wall structure compared with the resistant line “748”. The different cell structures can provide a cytological base for assessing cabbage head splitting.
Fusarium wilt (FW), caused by the soil-borne fungal pathogen Fusarium oxysporum is a serious disease in cruciferous plants, including the radish (Raphanus sativus). To identify quantitative trait loci (QTL) or gene(s) conferring resistance to FW, we constructed a genetic map of R. sativus using an F2 mapping population derived by crossing the inbred lines ‘835’ (susceptible) and ‘B2’ (resistant). A total of 220 markers distributed in 9 linkage groups (LGs) were mapped in the Raphanus genome, covering a distance of 1041.5 cM with an average distance between adjacent markers of 4.7 cM. Comparative analysis of the R. sativus genome with that of Arabidopsis thaliana and Brassica rapa revealed 21 and 22 conserved syntenic regions, respectively. QTL mapping detected a total of 8 loci conferring FW resistance that were distributed on 4 LGs, namely, 2, 3, 6, and 7 of the Raphanus genome. Of the detected QTL, 3 QTLs (2 on LG 3 and 1 on LG 7) were constitutively detected throughout the 2-years experiment. QTL analysis of LG 3, flanked by ACMP0609 and cnu_mBRPGM0085, showed a comparatively higher logarithm of the odds (LOD) value and percentage of phenotypic variation. Synteny analysis using the linked markers to this QTL showed homology to A. thaliana chromosome 3, which contains disease-resistance gene clusters, suggesting conservation of resistance genes between them.
We investigated the genetic diversity and structure of the 239 fixed lines with 47 simple sequence repeat (SSR) and 109 NGS-generated SNP markers evenly distributed in B. rapa genome. Phylogenetic analysis classified the vegetable fixed lines to four subgroups, with the three types forming a separate and relatively farther cluster. Population structure analysis identified four sub-populations corresponding to geographic origin and morphological traits, and revealed extensive admixture. The vegetable B. rapa fixed lines successfully developed in our study would be valuable materials for multinational B. rapa diversity resources establishment. Understanding the genetic diversity and population structure could be useful for utilization of the representing genetic variation and further genetic and genomic analysis.
Genome-wide association study (GWAS) is a very powerful method to identify the natural allelic variation present in crop plants causing variation to economically important traits. The recent advances in high throughput genotyping and sequencing technology supplemented greatly to GWAS. Taking this advantage, we selected a total of 382 Chinese cabbage inbred lines for GWAS study. The selected inbred lines are being sequenced using next generation sequencing technology to develop genome wide gene specific single nucleotide polymorphism markers. The morphological and quality traits data were taken from field grown inbred lines. The phenotype and genotype association study will be done with more environmental grown data’s and developed SNP. At the end of this project, gene specific SNP markers will be developed for Chinese cabbage breeding for morphological and quality traits.