검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.05 구독 인증기관·개인회원 무료
        One aspect of securing safety from the operation of Nuclear Power Plants (NPPs) is to evaluate the impact on residents at the facility’s exclusive area boundary to confirm that the radiological risk is below the allowable level. Normally, the risks from gaseous and liquid effluents are evaluated during the operation of facilities. Meanwhile, in order to be approved for the decommissioning plan, the environmental risks caused by activities during dismantling is also evaluated. Therefore, this study aims to investigate the exposure pathways considered in evaluating the risks to nearby residents from the operation and decommissioning of nuclear facilities and to examine the differences. The emission rate by radionuclide is calculated by evaluating the amount of leak from nuclear fuel during the operation of the facility through design data of the NPP. Each of the liquid and gaseous effluents is calculated, and the exposure dose received by nearby residents is calculated by considering the exposure pathways with these emission rates. In order to initiate the decommissioning of nuclear facilities, approval of the Final Decommissioning Plan (FDP) must be obtained. The FDP chapter shall describe the results of the environmental impact assessment of the decommissioning. It will not differ significantly in the exposure pathways during operation. However, the decommissioning of nuclear facilities is ultimately to remove Systems, Structures, and Components (SSCs) and to remove the regulation of the Nuclear Safety Act by ensuring that sites and remaining buildings meet the criteria for the license termination. In terms of release and reuse of nuclear facilities, the exposure dose to be considered in evaluating the dose can be considered for two main types: the site and the remaining building. The factors affecting the exposure pathways considered in assessing the environmental impacts considered in the operation and decommissioning of nuclear facilities are due to gaseous and liquid effluents. However, the difference should reflect the impact of NPP operations and decommissioning activities when evaluating the amount of radionuclides released by these effluents. Decommissioning should consider the impact after decommissioning, which is the effect of the receptor by radionuclides remaining on the site and in the remaining buildings. At this time, the effects of the source from the soil and the source from the surface of the building should be considered for the external and internal exposure pathways.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Korea currently has two permanent shutdown Nuclear Power Plants (NPPs), and the decommissioning project is expected to begin soon, starting with the first commercial NPP. The decommissioning project will eventually be the disposal of radioactive waste in the final stage of the work, and in that respect, proper tracking and history management should be well established in the management of waste. This is in line with the guidelines that regulatory agencies should also properly manage radioactive waste. Therefore, this study intends to examine the factors that should be considered in terms of tracking and management of radioactive waste in decommissioning nuclear facilities. The starting and final point of tracking radioactive waste generated during decommissioning is the physical inventory of the current as-is state and the final container. In this respect, the tracking of waste starts from the beginning of the dismantling operation. Thus, at the stage of approval of the decommissioning work, it may begin with an ID scheme, such as the functional location in operation for the target System, Structure, and Components (SSCs). As the dismantling work progresses, SSCs will be classified by nature and radiological level, which will be placed in containers in small packaging units. At this time, the small package should be given an ID. After that, the dismantling work leads to the treatment of waste, which involves a series of operations such as cutting, decomposition, melting, and decontamination. Each step in which these tasks are performed will be placed in a container, and ID assignment is also required. Until now, the small packaging container is for transfer after each treatment, and it is placed in the storage container in the final stage, at which time the storage container also gives a unique ID. Considerations for follow-up management were reviewed assuming solid waste, which is the majority of dismantled radioactive waste considered in this study. The ID system should be prepared from the start of the dismantling work, ID generation of the small transporting container and ID generation of the final disposal container during the intermediate waste treatment process, and each ID generation of the previous stage should be linked to each generation stage. In addition, each ID must be generated, and the definition of the grant scheme and attributes is required.