Recent research on stem cell conditioned medium (CM) has been revealed that CM could influence on the embryo development when supplemented to in vitro culture medium. However, the optimal basal medium for CM production has not determined although it is the fundamental factor of CM. The purpose of this study is to examine the effect of human derived adipose stem cell CM (hASC-CM) with different basal medium on mice embryo development after parthenogenetic activation (PA).
hASC-CM was collected from 2 kinds of serum free basal medium, DMEM and KSFM, respectively on day 5 from the culture of hASC isolated from human fat tissue. Intra-peritoneal injection of PMSG and hCG was conducted into 7-week-old ICR mice for superovulation. The oocytes were recovered from the oviductal ampulla, 18 h after hCG injection, and denuded using 0.1% hyaluronidase. PA of oocytes was conducted with KSOM media including strontium chloride. The parthenotes were in vitro cultured in 3 groups: 100% KSOM (Control), 75% KSOM + 25% DMEM or KSFM without FBS (DMEM or KSFM group) and 75% KSOM + 25% hASC-CM from DMEM or KSFM (DMEM-CM or KSFM-CM group). Cleavage rate was assessed after 2 days post IVC and blastocyst formation rate was evaluated after 6 days post IVC both using stereomicroscope. Total cell number of blastocysts was counted by Hoechst staining. 1way ANOVA from Graphpad prism 5 was used for statistical analysis and the values are presented as means ± standard error of mean.
As a result, blastocyst formation rate of DMEM-CM group (16.09±3.32%, P<0.05) was significantly lower than control and DMEM group (34.43±2.89% and 34.49±5.34%, P<0.05) but cleavage rate and total cell number of blastocysts showed no significant difference among groups. In case of KSFM, there was no significant difference in cleavage rate, blastocyst formation rate and total cell number of blastocysts among the control, KSFM group and KSFM-CM group.
The sort of basal medium used for the CM collection affected the development of parthenotes during in vitro culture differently. Therefore, further research should be conducted to find out the alternative basal medium of CM able to improve the embryo development.
This research was supported by Nature Cell (#550-20170028), Cooperative Research Program of RDA (CCAR, #PJ013954022018), Research Institute for Veterinary Science and the BK21 plus program.
The present study investigated the effects of follicle stimulating hormone (FSH) and human chorionic gonadotrophin (hCG) on the nuclear maturation of canine oocytes. Oocytes were recovered from mongrel female ovaries in various reproductive states; follicular, luteal or anestrous stage. Oocytes were cultured in serum-free tissue culture medium (TCM)-199 supplemented with various concentrations of FSH (Exp. 1: 0, 0.5, 1.0 or 10 IU) or hCG (Exp. 2: 0, 0.5, 1.0 or 10 IU) or both (Exp. 3: 1 IU FSH + 1 IU hCG) for 72 hr to determine the effective concentration of these hormones, and to examine their combined effect. After maturation culture, oocytes were denuded in PBS containing 0.1% (w/v) hyaluronidase by gentle pipetting. The denuded oocytes were stained with 1.9 μM. Hoechst 33342 in glycerol and the nuclear state of oocytes was evaluated under UV light. More (p<0.05) oocytes matured to MII stage when follicular stage oocytes were supplemented with 1 IU FSH (6.2%) compared with the control, 0.1 or 10.0 IU FSH (0 to 1.2%). Significantly higher (p<0.05) maturation rate to MII stage was observed in follicular stage oocytes supplemented with 1.0 IU hCG (7.2%) compared with the control or other hCG supplemented groups (0 to 1.5%). However, the combination of FSH and hCG did not improve the nuclear maturation rate of canine oocyte (2.4 %) compared with FSH (6.2%) and hCG alone (7.2%). In conclusion, FSH or hCG alone significantly increased the maturation of canine oocytes to MII stage.