검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        2.
        2012.06 구독 인증기관·개인회원 무료
        Poly(ADP-ribosyl)ation is post-translational modification of cellular proteins related to cell survival, cell death, cellular proliferation and epigenetic events. It has recently been shown to be important for pre-implantation development of mouse embryos. However, its function during early embryonic development of pig is not clear. This study investigated the importance of poly(ADP-ribosyl)ation during in vitro development of pig embryos produced by in vitro fertilization(IVF) or parthenogenetic activation (PA). Results showed that, chemical inhibition of PARP by 3-aminobenzamide (3-AB) did not influence the in vitro development of pig embryos up to morula stage (20±3.1 vs. 28.1±1.2%; p>0.05) but significanlty reduced the rate of blastocyst formation (5.2±2.1 vs. 20±3.1%; p<0.05) when compared to non-treated controls. Furthermore, culture of morula stage embryos in the pressence of 3-AB for 24h significantly reduced the rate of blastocyst formation (19.6± 4.6 vs. 41.4±5.3%; p<0.05) and expansion (4.7±3.0 vs. 28.1±6.1; p<0.05). The proportion of large-sized blastocyst (>200 μm) having higher blastocoel volume (15.3×106 μm3) was significantly reduced (p<0.05) in treatment group (32.2±7.8%) compared to non-treated control group (65.7±9.0%). TUNEL assay revealed that poly(ADP-ribosyl)ation-inhibited blastocyst had significantly increased indices of apoptosis than those of non-treated controls (10.88±0.02 vs. 2.71±0.01; p<0.05). These data suggest that Poly(ADP-ribosyl)ation may be important for blastocyst formation in pig embryo.
        3.
        2011.10 구독 인증기관·개인회원 무료
        Urokinas type plasminogen activator (uPA) has been used as a therapeutic agent for treating human diseases such as thrombosis. Attempts to transgenically overexpress the uPA in animal bioreactors have been hampered due to side effects associated with this functional protein hormone on homeostasis. Recently, chicken has been emerged as a potential candidate for use as bioreactor to produce proteins of pharmaceutical importance. Since this species has low homology uPA sequence with mammals, we hypothesized that chicken could be used as a potential bioreactor for production of human uPA. In this study, using replication‐defective Murine Leukemia Virus (MLV)‐based retrovirus vectors encapsidated with Vesicular Stomatitis Virus G Glycoprotein (VSV‐G), we attempted to make transgenic chicken expressing human uPA (huPA). The recombinant retrovirus was injected beneath the blastoderm of non‐incubated chicken embryos (stage X, at laying). After 21 days of incubation (at hatching), all of the 38 living chicks that assayed, were found to express the vector‐encoded huPA gene in various organs and tissues, which was under the control of the Rous Sarcoma Virus (RSV) or Cytomegalovirus (CMV) promoter. Using specific primer set for huPA, PCR and RTPCR analyses of gDNA isolated from these samples demonstrated these chickens were transgenic for huPA. Furthermore, successful germ line transmission of huPA transgene was confirmed and next generation whole body huPA transgenic chickens were also produced. We also assayed huPA protein titer in blood (17.1 IU/ml) and eggs (4.4 IU/ml) of whole body huPA transgenic chicken. Thus, our results demonstrated that chicken could be used as bioreactors to produce huPA.