Understanding the classification of malocclusion is a crucial issue in Orthodontics. It can also help us to diagnose, treat, and understand malocclusion to establish a standard for definite class of patients. Principal component analysis (PCA) and k-means algorithms have been emerging as data analytic methods for cephalometric measurements, due to their intuitive concepts and application potentials. This study analyzed the macro- and meso-scale classification structure and feature basis vectors of 1020 (415 male, 605 female; mean age, 25 years) orthodontic patients using statistical preprocessing, PCA, random matrix theory (RMT) and k-means algorithms. RMT results show that 7 principal components (PCs) are significant standard in the extraction of features. Using k-means algorithms, 3 and 6 clusters were identified and the axes of PC1~3 were determined to be significant for patient classification. Macro-scale classification denotes skeletal Class I, II, III and PC1 means anteroposterior discrepancy of the maxilla and mandible and mandibular position. PC2 and PC3 means vertical pattern and maxillary position respectively; they played significant roles in the meso-scale classification. In conclusion, the typical patient profile (TPP) of each class showed that the data-based classification corresponds with the clinical classification of orthodontic patients. This data-based study can provide insight into the development of new diagnostic classifications.
Mitis-salivarius sucrose bacitracin(MSB) medium is widely used in the selective isolation of mutans streptococci(MS), a designation for a group of oral cariogenic species. Recently, we have isolated three bacterial strains grown on MSB agar from human dental plaques. The three strains exhibited biochemical characteristics similar to those of the biotype IV of MS, with the exception that they manifested a positive reaction for arginine deaminase. The objective of this study was to identify and characterize these three clinical isolates. The bacteria were identified with biochemical tests as well as by 16S rDNA cloning and sequencing. In order to compare the antibiotics susceptibility of the clinical isolates with that of type strain, the minimum inhibitory concentrations of 9 antibiotics were determined using broth dilution assays. The results identified all of our three clinical isolates as Enterococcus faecalis. All E. faecalis strains were found to be susceptible to penicillin G, amoxicillin, augmentin, and vancomycin, but were resistant to ciprofloxacin, cefuroxim axetil, and clindamycin. Our findings indicate that E. faecalis is capable of growing on MSB agar, and suggest that the MSB medium be improved so that only MS should be recoverable on the medium, as originally devised for their selection.