The activated sludge from the aeration basin of the Su-yeong municipal wastewater treatment plant which has operated by a standard activated sludge process in Busan, Korea was investigated during April 2004 and January 2005 with several bio-indicators. The number of bacteria and fungi per gram of dry weight of MLSS were estimated to be 3.1×106~1.5×108 and 1.1×103~1.1×105 colony forming units, respectively, by the plate agar method. By cultivation-independent methods, such as 4’,6-diamidino-2-phenylindole stain and fluorescence in situ hybridization, the ratio of eubacteria to the entire biomass was evaluated by more than 80% (v/v). The ratio of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria to the total eubacteria was determined to be 7.0~9.8% and 3.3~6.2% without heavy variation in spite of a period of relatively low temperature in the basin. It would be expected that the nitrification would occur or at least co-exist throughout the year in the sludge of many municipal WWTP with influents that contain the sufficient nitrogen sources although the WWTP does not have any specialized processes for the removal of nitrogen.
The purpose of this study was to evaluate the partial oxidation of the biological treatment plant effluents using Fenton`s reagent as a pretreatment step prior to a tertiary biological oxidation of these effluents. Fenton`s reagent was evaluated as a pretreatment process for inhibitory or refractory organics. Based on the Fenton oxidation system, the petrochemical wastewater treatment plant effluent was shown to have significant improvement in toxicity after oxidation with hydrogen peroxide. For example, at range of 42∼184 ㎎/L COD of petrochemical plant effluents, the COD removal efficiencies were from 38.2% to 60.1% after reaction with hydrogen peroxide 200 ㎎/L and Fe^2+ 100 ㎎/L and reaction time was 30 minutes. The total TOC reduction were about 15.8∼22.4% with same test condition and difference between the overall removal rate and BOD/COD ratio after Fenton`s oxidation estabilished in the biodegradation and otherwise meets the discharge standard or reuse for cooling tower make-up water.