검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The telescope to be onboard SPICA (Space Infrared Telescope for Cosmology and Astrophysics) has an aperture diameter of 2.5 m and its imaging performance is to be diffraction-limited at a wavelength of 20 μm at the operating temperature of <8 K. Because manufacturing precise autocollimating at mir- rors (ACFs) with sizes comparable to the SPICA telescope is not technically feasible, we plan to use sub-aperture stitching interferometry through ACFs for optical testing of the telescope. We have verified the applicability of the sub-aperture stitching technique to the SPICA telescope by performing stitching experiments in a vacuum at a room temperature, using the 800-mm telescope and a 300-mm ACF. We have also developed a new method to reduce uncertainties possibly caused by cryogenic and gravitational deformations of ACFs.
        3,000원
        2.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Early-type galaxies (ETGs) are generally dominated by old low-mass stars, which are not very productive of dust, and hot interstellar plasmas, which are very destructive of dust. Thus ETGs provide harsh environments for survival of dust. It has been found that some ETGs contain a large amount of dust, and yet its supply mechanism is not understood well. We present the result of a systematic study of dust in ETGs with the AKARI mid- and far-infrared all-sky surveys. From the AKARI result and the Ks band data obtained by ground-based telescopes, we nd that there is a global correlation between the dust mass and stellar luminosity. We also compare the AKARI all-sky survey result with the CO data to discuss origins of dust in ETGs.
        3,000원
        3.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have performed systematic studies of the properties of dust in various environments of nearby galaxies with AKARI. The unique capabilities of AKARI, such as near-infrared (near-IR) spectroscopy combined with all-sky coverage in the mid- and far-IR, enable us to study processing of dust, particularly carbonaceous grains includings polycyclic aromatic hydrocarbons (PAHs), for unbiased samples of nearby galaxies. In this paper, we first review our recent results on individual galaxies, highlighting the uniqueness of AKARI data for studies of nearby galaxies. Then we present results of our systematic studies on nearby starburst and early-type galaxies. From the former study based on the near-IR spectroscopy and mid-IR all-sky survey data, we find that the properties of PAHs change systematically from IR galaxies to ultra- luminous IR galaxies, depending on the IR luminosity of a galaxy or galaxy population. From the latter study based on the mid- and far-IR all-sky survey data, we find that there is a global correlation between the amounts of dust and old stars in early-type galaxies, giving an observational constraint on the origin of the dust.
        4,000원
        4.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We present our AKARI study of massive star forming regions where a large-scale cloud-cloud collision possibly contributes to massive star formation. Our targets are Spitzer bubbles, which consist of two types of bubbles, closed and broken ones; the latter is a candidate of the objects created by cloud-cloud collisions. We performed mid- and far-infrared surface photometry toward Spitzer bubbles to obtain the relationship between the total infrared luminosity, LIR, and the bubble radius, R. As a result, we nd that LIR is roughly proportional to R where = 2:10:4. Broken bubbles tend to have larger radii than closed bubbles for the same LIR.
        3,000원
        5.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Debris disks are circumstellar dust disks around main-sequence stars. They are important observational clues to understanding the planetary system formation. The zodiacal light is the thermal emission from the dust disk in our Solar system. For a comprehensive understanding of the nature and the evolution of dust disks around main-sequence stars, we try a comparative study of debris disks and the zodiacal light. We search for debris disks using the AKARI mid-infrared all-sky point source catalog. By applying accurate ux estimate of the photospheric emission based on the follow-up near-infrared observations with IRSF, we have improved the detection rate of debris disks. For a detailed study of the structure and grain properties in the zodiacal dust cloud, as an example of dust disks around main-sequence stars, we analyze the AKARI mid-infrared all-sky diffuse maps. As a result of the debris disks search, we found old (>1 Gyr) debris disks which have large excess emission compared to their age, which cannot be explained simply by the conventional steady-state evolution model. From the zodiacal light analysis, we nd the possibility that the dust grains trapped in the Earth's resonance orbits have increased by a factor of 3 in the past 20 years. Combining these results, we discuss the non-steady processes in debris disks and the zodiacal light.
        4,000원
        6.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The zodiacal light emission is the thermal emission from the interplanetary dust and the dominant di use radiation in the mid- to far-infrared wavelength region. Even in the far-infrared, the contribution of the zodiacal emission is not negligible at the region near the ecliptic plane. The AKARI far-infrared all-sky survey covered 97% of the whole sky in four photometric bands with band central wavelengths of 65, 90, 140, and 160 m. AKARI detected the small-scale structure of the zodiacal dust cloud, such as the asteroidal dust bands and the circumsolar ring, in far-infrared wavelength region. Although the most part of the zodiacal light structure in the AKARI far-infrared all-sky image can be well reproduced with the DIRBE zodiacal light model, there are discrepancies in the small-scale structures. In particular, the intensity and the ecliptic latitude of the peak position of the asteroidal dust bands cannot be repro- duced precisely with the DIRBE models. The AKARI observational data during more than one year has advantages over the 10-month DIRBE data in modeling the full-sky zodiacal dust cloud. The resulting small-scale zodiacal light structure template has been used to subtract the zodiacal light from the AKARI all-sky maps.
        3,000원
        7.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The AKARI 9 and 18 m di use maps reveal the all-sky distribution of the interstellar medium with relatively high spatial resolution of 600. The zodiacal light is a dominant foreground component in the mid-infrared. Thus, removal of the zodiacal light is a critical issue to study low surface brightness Galactic di use emission. We carried out modeling of the zodiacal light based on the Kelsall model which is constructed from the COBE data. In the previous study, only a time-varying component of the zodiacal light brightness was used for determination of the model parameters. However, there remains a residual component of the zodiacal light around the ecliptic plane even after removal with the model. Therefore, instead of using a time-varying component, we use the absolute brightness of the zodiacal light and we nd that the new model can better remove the residual component. As a result, the best-fit model parameters are changed from those in the previous study. We discuss the properties of the zodiacal light based on our new result.
        3,000원
        8.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We plan to produce a faint source catalogue from the AKARI mid-infrared (IR) all-sky diffuse maps. In the publicly-available AKARI mid-IR point source catalogue (PSC), sources were extracted from single- scan images, and con rmed by using the other scan images. By stacking multiple scan images, we can detect fainter sources which are not listed in the PSC. We optimized the source extraction process using a 6◦  6◦ area around the star-forming region, Cepheus B. Then, we divided the all-sky data into three seasonal images, and checked the positions and the uxes of the detected sources on the images. As a result, our new source extraction method works well; 90% of the sources are also identi ed in the WISE catalogue. In this method, we obtain the detection limit twice deeper than that of the PSC. The number of sources increases by a factor of 2, as compared with the PSC.
        3,000원
        9.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We are creating all-sky diffuse maps from the AKARI mid-infrared survey data with the two photometric bands centered at wavelengths of 9 and 18 m. The AKARI mid-infrared diffuse maps achieve higher spatial resolution and higher sensitivity than the IRAS maps. In particular, the 9 m data are unique resources as an all-sky tracer of the emission of polycyclic aromatic hydrocarbons (PAHs). However, the original data suffer many artifacts. Thus, we have been developing correction methods. Among them, we have recently improved correction methods for the non-linearity and the reset anomaly of the detector response. These corrections successfully reduce the artifact level down to 0.1 MJy sr􀀀1 on average, which is essential for discussion on faint extended emission (e.g., the Galactic PAH emission). We have also made progress in the subtraction of the scattered light caused in the camera optics. We plan to release the improved diffuse maps to the public within a year.
        3,000원
        10.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We present a comparative study of CO and polycyclic aromatic hydrocarbon (PAH) emission toward a region including the massive star-forming regions of NGC 6334 and NGC 6357. We use the NANTEN 12CO(J=1{0) data and the AKARI 9 m All-Sky diffuse map in order to evaluate the calibration accuracy of the AKARI data. We con rm that the overall CO distribution shows a good spatial correspondence with the PAH emission, and their intensities exhibit a good power-law correlation with a spatial resolution down to 4′ over the region of 10◦10◦. We also reveal poorer correlation for small scale structures between the two quantities toward NGC 6357, due to strong UV radiation from local sources. Larger scatter in the correlation toward NGC 6357 indicates higher ionization degree and/or PAH excitation than that of NGC 6334.
        3,000원