검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2018.07 KCI 등재 서비스 종료(열람 제한)
        최근 이상기후로 인한 집중호우 발생빈도와 이로 인한 국지적인 홍수 피해가 증가하고 있다. 이러한 점에서 홍수피해 예방측면에서 수치예보 정보 활용이 요구되고 있다. 그러나 수치예보모델은 초기 조건 및 지형적 요인으로 인해 시공간적 편의가 존재하며 실시간 예측정보로 활용하기 전에 모 형결과에 대한 편의보정이 요구된다. 본 연구에서는 관측지점 기준으로 편의 보정계수를 산정하는 과정에서 모든 관측소간의 상관성을 거리의 함 수로 고려하여 미계측지점의 편의 보정계수를 공간적으로 확장할 수 있는 Bayesian Kriging 기반 MFBC 기법을 개발하였다. 본 연구에서 개발한 방법은 미계측 유역에 대해서도 보정계수를 효과적으로 추정하는 것이 확인되었으며, 비교적 고해상도로 72시간(3일) 정도까지 예측강우 정보를 활용하는 것이 가능할 것으로 판단된다.
        2.
        2015.02 서비스 종료(열람 제한)
        Seasonal rainfall forecasts are one of the most important part of water resources management in minimizing climate-related risk. Recently, abnormal change in precipitation raised the attention of not only scientists it gets big interest in general public too. Seasonal climate forecasts are typically based on simulations from general circulation models (GCMs) that approximate the complex physical, chemical, and biological processes. But it has been known that General Circulation Models have considerable uncertainties. Recent studies suggested that Multi-Model Ensemble(MME) could reduce this uncertainties and give an improvement on the results. There have been used several MME estimation techniques that are simply averaging models and regression based techniques. This study aims to improve MME using Bayesian Model Averaging(BMA) technique which gives weights to the models based on each model performance to present observation. The result showed that BMA technique output is statistically more fitted to the observation than the other techniques and it is very important to further analysis such as downscaling and other simulation method that uses future precipitation as a main input data.