Quantum dot nanocomposite-based luminescent materials have gained attention for solid-state lighting and optical displays. This study presents a one-step, eco-friendly hydrothermal process to synthesize nitrogen, potassium, and calcium-doped carbon quantum dots (N, K, Ca-doped CQDs) from the flower extract of Mesembryanthemum crystallinum L. (ice plant). The CQDs were characterized using HRTEM, EDX, SAED, XPS, XRD, NMR, FTIR, zeta potential, UV–Vis, and photoluminescence spectroscopy. HRTEM revealed an average particle size of 4.6 nm, with a range of 2 to 7 nm. The CQDs exhibited a quantum yield of 20%, excellent water solubility, photostability, and greenish fluorescence under UV (365 nm). The fluorescence spectra were analyzed using CIE (Commission Internationale de l’Eclairage) chromaticity coordinates to determine the emitted color. The fluorescence emission behavior was influenced by solvent polarity, locally excited (LE) states, intramolecular charge transfer (ICT) processes, and hydrogen bonding. The hydrogen bonds between N, K, Ca-doped CQDs and DI water likely enhanced the stability of the ICT state, resulting in a red shift in fluorescence. Additionally, we developed an eco-friendly wheat-starch-based bioplastic nanocomposite by embedding the CQDs. The effects of CQD concentration and pH sensitivity on luminescent properties were explored. Finally, we demonstrated a practical application by designing a conceptual nameplate-like calligraphy using the optimized CQDs@bioplastic nanocomposite film (CQD concentration: 240 mg/mL, pH: 2.7), highlighting its potential for luminescent film applications.
The detailed understanding of fluorescence emission processes is still unclear. This study demonstrates Aegle marmelos derived luminescent heteroatoms (N, Ca, K) doped carbon quantum dots (CQDs) using an economically and ecologically sustainable synthesis process without the necessity for any doping precursors due to its phytochemical, vitamin and mineral content. Carboxyl functionalization was done by adding lemon juice to the fruit extract. The morphological, physiochemical, compositional, crystallinity, and surface functional groups having heteroatom doped CQDs were analysed by HRTEM, EDX, XPS, XRD, FTIR etc. Besides, CQDs exhibited pH and solvent-dependent tuneable fluorescence characteristics. In fact, beyond pH 7.77, a protonation-deprotonation-driven red-shift was observed together with a decrease in the contribution of prominent peaks. Meanwhile, the features of solvatochromic fluorescence were examined in a range of aprotic and protic solvents with low and high polarity. Based on the studied Kamlet–Taft parameters and the obtained spectroscopic characterizations, a suitable fluorescence emission mechanism is provided. The observed solvatochromic fluorescence is thought to be caused by a combination of dipole moment polarisation, intramolecular charge transfer processes with or without H-bond stabilisation via the interaction of heteroatoms doped CQDs with solvent mediated by electron donation and acceptance from various surface functional groups such as hydroxyl, carboxyl with solvent molecules. Hence, this study is believed to promote the development of eco-tuneable fluorescent heteroatom doped CQDs and provide further insights into the fundamental fluorescence mechanisms, which include the relationship between morphology, surface properties and plausible quantum effects between CQDs and solvents.