검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2014.07 서비스 종료(열람 제한)
        To select genes associated with the high-temperature tolerance from Brassica, two transcriptomic analyses have been used: microarray and RNA Seq. Using two contrasting inbred lines of B. rapa, Chiifu and Kenshin, version 3 microarray (135 K microarray) was conducted to RNA samples extracted from series of 45℃-treated leaves and 29 genes were selected for genomic DNA cloning of cabbage. Of 29 genes, 8 genes contain 40 SNPs, 11 SSRs and 23 In-Del markers that distinguish high-temperature tolerant and susceptible cabbages, BN1 and BN2. These 8 genes include a unknown gene, AP2, SMP, FBD, SKP2B, IAA16, HSP21 and OLI2-2. We also selected 16 cabbage genes from RNA Seq analysis using two inbred lines, BN1 and BN2: 5 genes for BN1-high expression, 5 genes for BN1-specific expression, 5 genes for BN2-specific expression, and BoCaMB. Using RNA sequences, genomic DNAs corresponding to 16 genes have been clones and analyzed to find out molecular markers. Markers were further transformed into PCR-based marker and confirmed with additional cabbage genetic lines. We are currently transforming PCR-makers into SNP markers. To examine function of high-temperature tolerant genes, we also transformed 5 genes into Arabidopsis plants. We will describe detailed methods and results in a poster. [This work was supported by a grant from the Next-Generation BioGreen 21 Program (the Next-Generation Genomics Center No. PJ009085), Rural Development Administration, Republic of Korea]
        2.
        2014.07 서비스 종료(열람 제한)
        Shaggy-like kinases (SKs), also known as Glycogen synthase kinase 3 (GSK3) proteins, play many important roles in cellular signaling in animals, fungi and amoebae. In particular, SKs participate in key developmental signaling pathways and also regulate the cytoskeleton. SKs -encoding genes are also present in all land plants and in algae, raising questions about possible ancestral functions in eukaryotes. Unlike in animals and Dictyostelium, land plant SKs are encoded by relatively large multi-gene families whose members share high sequence similarity. Along with the studied 10 ASKs (Arabidopsis shaggy-like kinases) indicate that plant SK proteins are actively implicated in hormonal signalling networks during development as well as in biotic and abiotic stress responses. In this study, 18 BrSKs are identified from Chinese cabbage, and they are classified into four groups according to the classification of Arabidopsis. The characterization, classification, gene structure and phylogenetic construction of BrSK proteins are performed. Distribution mapping shows that BrSKs are absented in A02 and A10 chromosome. 8 orthologous gene pairs are shared by Chinese cabbage and Arabidopsis. The expression patterns of BrSK genes exhibit differences in five tissues based on RNA-seq data in public data base. Specially, BrSKβ-1 and BrSKβ-2 show floral buds specifically expressed, which indicate that BrSKβ may play a key role during flower or pollen development. We deomonatrated that suppresion of Arabdiopsis orthology of BrSKβ impaired the late pollen in Arabidopsis plants. Taken together, our analyses provided insights into the characterization of the BrSK genes in Chinese cabbage, providing foundation of further functional studies of those genes. [This work was supported by a grant from the Next-Generation BioGreen 21 Program (the Next-Generation Genomics Center No. PJ008118), Rural Development Administration, Republic of Korea]