검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have revisited Monte Carlo radiative transfer calculations for clumpy molecular clouds. Instead of introducing a three-dimensional geometry to implement clumpy structure, we have made use of its stochastic properties in a one-dimensional geometry. Taking into account the reduction of spontaneous emission and optical depth due to clumpiness, we have derived the excitation conditions of clumpy clouds and compared them with those of three-dimensional calculations. We found that the proposed approach reproduces the excitation conditions in a way compatible to those from three-dimensional models, and reveals the dependencies of the excitation conditions on the size of clumps. When bulk motions are involved, the applicability of the approach is rather vague, but the one-dimensional approach can be an excellent proxy for more rigorous three-dimensional calculations.
        4,000원
        2.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Intensity interferometry, based on the Hanbury Brown–Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25 000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as mR ≈ 14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass–radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade–Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.
        5,400원
        3.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the development of solar flux receivers operating at 2.8 GHz to monitor solar radio activity. Radio waves from the sun are amplified, filtered, and then transmitted to a power meter sensor without frequency down-conversion. To measure solar flux, a calibration scheme is designed with a noise source, an ambient load, and a hot load at 100℃. The receiver is attached to a 1.8 m parabolic antenna in Icheon, owned by National Radio Research Agency, and observation is being conducted during day time on a daily basis. We compare the solar fluxes measured for last seven months with solar fluxes obtained by DRAO in Penticton, Canada, and by the Hiraiso solar observatory in Japan, and finally establish equations to convert observed flux to the so-called Penticton flux with an accuracy better than 3.2 sfu.
        4,000원
        4.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We study the physical and chemical properties of the molecular clump hosting a young stellar cluster, IRAS 20160+3636, which is believed to have formed via the “collect and collapse” process. Physical parameters of the UC Hii region associated with the embedded cluster are measured from the radio continuum observations. This source is found to be a typical Galactic UC Hii region, with a B0.5 type exciting star, if it is ionized by a single star. We derive a CN/HCN abundance ratio larger than 1 over this region, which may suggest that this clump is being affected by the UV radiation from the Hii region.
        4,000원
        5.
        2013.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We develop a radio receiver system operating at λ ~ 1.3 mm for the 6 m telescope of Seoul Radio Astronomy Observatory. It consists of a dual polarization receiver, a couple of IF processing units, two FFT spectrometers, and associated software. By adopting sideband-separating superconductor mixers with image band terminated to waveguide load at 4.2 K, we achieve TRX ≤ 100 K and Tsys less than 150 K at best weather condition over 210-250 GHz frequency range. The intermediate frequency signal of 3.5-4.5 GHz is down converted to 0-1 GHz and fed into the FFT spectrometers. The spectrometer covers 1 GHz bandwidth with a spectral resolution of 61 KHz. Test observations are conducted toward several radio sources to evaluate the performance of the system. Aperture and beam efficiencies measured by observing planets are found to be typically 44  59% and 47  61%, respectively over the RF band, which are consistent with those measured at 3 mm band previously.
        4,000원
        6.
        2008.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As a continuation of a previous work by Park et al. (2006), we have developed a two-element radio interferometer that can measure both the phase and amplitude of a visibility function. Two small radio telescopes with diameters of 2.3 m are used as before, but this time an external reference oscillator is shared by the two telescopes so that the local oscillator frequencies are identical. We do not use a hardware correlator; instead we record signals from the two telescopes onto a PC and then perform software correlation. Complex visibilities are obtained toward the sun at λ=21cm for 24 baselines with the use of the earth rotation and positional changes of one element, where the maximum baseline length projected onto UV plane is ~90λ As expected, the visibility amplitude decreases with the baseline length, while the phase is almost constant. The image obtained by the Fourier transformation of the visibility function nicely delineates the sun, which is barely resolved due to the limited baseline length. The experiment demonstrates that this system can be used as a "toy" interferometer at least for the education of (under)graduate students.
        4,000원
        7.
        2003.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We introduce and describe performance of the 6-meter telescope of Seoul Radio Astronomy Observatory (SRAO). All the softwares and instruments except the antenna structure and its driving system are developed for ourselves. The SIS mixer type receiver resulted in the receiver noise temperature less than 50 K (DSB) over the whole 3-mm radio window. An autocorrelation spectrometer, developed first in Korea, provides maximum 50 MHz band width over 1024 channels. Antenna surface is measured and adjusted using template method and radio holography which resulted in a superb surface accuracy bet-ter than 30μm. Accordingly, the aperture and beam efficiences amount to 70% and 75%, respectively, largely independent of frequency in the 85 - 115 GHz range. It is also found that telescope pointing errors are less than 10" in both azimuth and elevation and that antenna gain is almost constant against elevation greater than 20°, without adjusting sub-reflector position. The SRAO 6-meter telescope is now fully operational and all these characteristics verify that observations are carried out with high precision and fidelity.
        4,000원
        8.
        2002.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the results of VLA NH3 (1,1) and (2,2) line observations of the young-stellar object (YSO) IRAS 19550+3248. The integrated intensity map of the NH3 (1,1) line shows that there are two ammonia cores in this region; core A which is associated with the YSO, and core B which is diffuse and located at the northeast of core A. Core A is compact and elongated along the east-west direction (0.07 pc×0.05 pc) roughly perpendicular to the molecular outflow axis. Core B is diffuse and extended (0.18 pc×0.07 pc). NH3 (2,2) line is detected only toward core A, which indicates that it is hotter (~ 15 K), presumably due to the heating by the YSO. The NH3 (1,1) line toward core A is wide (Δv ≳ 3 km s-l) and appears to have an anomalous intensity ratio of the inner satellite hyperfine lines. The large line width may be attributed to the embedded YSO, but the hyperfine anomaly is difficult to explain. We compare the results of NH3 observations with those of previous CS observations and find that the CS emission is detected only toward core A and is much more extended than the NH3 emission.
        4,000원