Using the MHD coronal seismology technique, we estimated the magnetic field for three spicules observed in 2008 June. For this study, we used the high resolution Ca II H line (3968.5 ˚A) images observed by the Hinode SOT and considered a vertical thin flux tube as a spicule model. To our knowledge, this is the first attempt to estimate the spicule magnetic field using the Hinode observation. From the observed oscillation properties, we determined the periods, amplitudes, minimum wavelengths, and wave speeds. We interpreted the observed oscillations as MHD kink waves propagating through a vertical thin flux tube embedded in a uniform field environment. Then we estimated spicule magnetic field assuming spicule densities. Major results from this study are as follows : (1) we observed three oscillating spicules having durations of 5-7 minutes, oscillating periods of 2-3 minutes, and transverse displacements of 700-1000 km. (2) The estimated magnetic field in spicules is about 10-18 G for lower density limit and about 43-76 G for upper density limit. (3) In this analysis, we can estimate the minimum wavelength of the oscillations, such as 60000 km, 56000 km, and 45000 km. This may be due to the much longer wavelength comparing with the height of spicules. (4) In the first event occurred on 2008 June 03, the oscillation existed during limited time (about 250 s). This means that the oscillation may be triggered by an impulsive mechanism (like low atmospheric reconnection), not continuous. Being compared with the ground-based observations of spicule oscillations, our observation indicates quite different one, i.e., more than one order longer in wavelength, a factor of 3-4 larger in wave speed, and 2-3 times longer in period.
Here we report the results from spectroscopic observations of soloar active regions in the HeI 10830 Å line at the German Vacuum Tower Telescope(VTT) in Tenerife during the August 199:3 International EFR(Emerging Flux Region) Campaign. Four active regions in various stages of their evolution, i.e., NOAA7558, 7560, 7561, and 7562, were ovserved on 10 August 1993. From the observed HeI 10830 Å spectra in these active regions, spectroscopic quantities such as equivalent width(EW), doppler shift, doppler width, etc., were derived(see Figure l(a)) and the correlation between them were studied(see Figure l(b)). Our main results are as follows: (I)In NOAA7562, which is a young and evolving EFR, the EW is large, while it is small around a simple and roundish spot of NOAA7558. (2)In these active regions, redshift in the 10830 line is dominant when the EW is larger. (3)As the doppler width increases, the line tends to shift redward. (4)When the EW is smaller, it seems to exist another component which have dynamic characteristics different from the redshifting component. In NOAA7560 and NOAA7561, regions which have several small spots, the values of the EW are intermediate. Results (2) and (3) may suggest the possible existence of downflow above active regions, if the HeI 10830 Å line is formed in the upper chromopshere, and it is consistent with the earlyer result from the SMM extreme-ultraviolet observation by Klimchuk(1987, Astrophys. J., 323, 368) (to be submitted. to Astronomy and Astrophysics; an extended abstract)