검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 47

        1.
        2023.05 구독 인증기관·개인회원 무료
        CANDU Spent Fuel (CSF) dry storage system, SILO, has been operated from 1992 at Wolsung under 50 year operating license. As of 2023, this system has been operated for over 30 years and its licensed remaining operation time is less than 20 years. When it faces the final stage of operation, it has only two options; moving to a centralized away-from-reactor storage or extending its license atreactor. These two options have an inevitable common duty of confirming the CSF integrity by a “demonstration test”. Since the degradation of CSF and structural materials in the SILO are critically dependent on temperature, two important goals of the ‘DEMO test’ were set as follows. 1. Design of ‘DEMO SILO’: Development of internal monitoring technology by transforming SILO design. 2. Accurate measurement and evaluation of the three-dimensional temperature distribution in the ‘DEMO SILO’ Based on operating real commercial SILO dimension, a conceptual “DEMO SILO” design has been developed from 2022. Because, unlike with commercial Silo, ‘Demo Silo’ must be disassembled and assembled, and have penetration holes. Safety evaluation technologies like structural, thermal and radiation protection analysis also have been developed with design work. ‘Demo SILO’ should evaluate an accurate 3D temperature distribution with minimal number of thermocouples and penetration holes to avoid disruption of internal flow and temperature distribution. For this reason, a ‘Best Estimate Thermal-Hydraulics evaluation system for SILO’ is under development and it will be essential for ensuring temperature prediction accuracy. Construction of a full-scale test apparatus to validate this technology will begin in 2024. In order to supply power to many heaters and monitor temperature gradient inside of this apparatus, it has modular design concept by dividing its whole body to axial 9 sub-bodies which looks like a donut containing a basket at center position.
        8.
        2018.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Currently, the Korea Atomic Energy Research Institute (KAERI) is planning to build the Ki-Jang Research Reactor (KJRR) in Ki-Jang, Busan. It is important to safely dispose of low-level radioactive waste from the operation of the reactor. The most efficient way to treat radioactive waste is cement solidification. For a radioactive waste disposal facility, cement solidification is performed based on specific waste acceptance criteria such as compressive strength, free-standing water, immersion and leaching tests. Above all, the leaching test is important to final disposal. The leakage of radioactive waste such as 137Cs causes not only regional problems but also serious global ones. The cement solidification method is simple, and cheaper than other solidification methods, but has a lower leaching resistance. Thus, this study was focused on the development of cement solidification for an enhancement of cesium leaching resistance. We used Zeolite and Loess to improve the cesium leaching resistance of KJRR cement solidification containing simulated KJRR liquid waste. Based on an SEM-EDS spectrum analysis, we confirmed that Zeolite and Loess successfully isolated KJRR cement solidification. A leaching test was carried out according to the ANS 16.1 test method. The ANS 16.1 test is performed to analyze cesium ion concentration in leachate of KJRR cement for 90 days. Thus, a leaching test was carried out using simulated KJRR liquid waste containing 3000 mg·L-1 of cesium for 90 days. KJRR cement solidification with Zeolite and Loess led to cesium leaching resistance values that were 27.90% and 21.08% higher than the control values. In addition, in several tests such as free-standing water, compressive strength, immersion, and leaching tests, all KJRR cement solidification met the waste acceptance or satisfied the waste acceptance criteria for final disposal.
        4,200원
        14.
        2009.08 구독 인증기관·개인회원 무료
        In this study, we conducted to select the promising crops for both uses in the bioethanol and forage production in Korea. The result indicated t㏊t Natsukaje (guinea grass), Gwangpyeongok (corn), Jumbo (sorghum×sudangrass hybrid), SS405 (sorghum×sorghum hybrid), Millex32 (pearl millet), Jeju barnyard grass), Alamo (switch grass) and Selection75 (klein grass) showed the production of biomass from the highest to the lowest in order. However, the order of the production of quality forage was, from the highest to the lowest, Natsukaje (guinea grass), Jumbo (sorghum×sudangrass hybrid), SS405 (sorghum×sorghum hybrid), Gwangpyeongok (corn), Millex32 (pearl millet), Selection75 (klein grass), Jeju (barnyard grass), and Alamo (switch grass). We concluded the Natsukaje (guinea grass) was the best bioethanol crop, and also the Natsukaje (guinea grass) was the best for forage production.
        15.
        2009.12 KCI 등재 서비스 종료(열람 제한)
        Perilla frutescens, which belonging to the Labiatae family, is widely cultivated oil crop and have been used traditional herbal medicine in East Asia such as Korea, China, and Japan. Especially, the leaves and the seeds of this species are important in Korean traditional cooking, as one of the popular garnish and food colorants. Numerous studies have revealed that the beneficial health effects of perilla are due to its several phytochemicals contents, such as rosmarinic acid, caffeic acid, luteolin, and apigenin. For this reason, increasing the content of phytochemicals in perilla hasbecome a major breeding objective. The genetic diversity of the rosmarinic acid, caffeic acid, luteolin, and apigenin content in perilla seed is poorly documented. We analyzed the rosmarinic acid, caffeic acid, luteolin, and apigenin content of 203 accessions of perilla germplasm by high performance liquid chromatography (HPLC). The rosmarinic acid and luteolin contents ofgermplasms were ranged from 15.7 μg/g to 2717.1 μg/g and from 1.6 μg/g to 582.4 μg/g respectively.
        1 2 3