검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2022.10 구독 인증기관·개인회원 무료
        As an alternative technology for the efficient disposal of spent nuclear fuel, various process flows can be selected based on the recovered and separated radioactive nuclide group. This is to examine the efficiency of the disposal area of spent nuclear fuel when various disposal technologies and several treatment processes are applied to spent nuclear fuel, compared to the deep geological disposal of burying the entire spent fuel in the ground. Above all, the biggest advantage of the optional treatment processes is that it can be applied to various disposal methods (deep borehole disposal, deep geological disposal) because it can process spent fuel in various sizes and separate into some groups according to the properties of radionuclides. These optional processes are not new technology and currently available as of today, and the level is classified based on the stepwise separation of high heat emission nuclides and long half-life nuclides. This is to increase the efficiency of the disposal of spent nuclear fuel by separating and managing high-risk radionuclides separately. Relatively various optional processes are possible depending on the level, and characteristic analysis is performed on wastes treated with alternative technologies. The mass balance for each option process is completed, and the amount of waste is also calculated accordingly. These are used as basic data for waste disposal area and economic evaluation. Besides it is easy to process spent fuel of various sizes suitable for deep geological disposal or deep borehole disposal technology when an optional treatment technology is applied to spent fuel. However, since this selective process is based on the process structure constructed in a broad framework, it is considered that additional follow-up studies are needed not only on detailed technology but also on the flow and amount of waste.
        2.
        2022.10 구독 인증기관·개인회원 무료
        Considering the domestic condition with small land area and high population density, it is necessary to develop technology that can reduce the disposal area than the deep geological disposal method. For this, KAERI is developing a nuclide management process that can reduce the environmental burden of spent fuel, and establishing an evaluation model that can evaluate the performance of various process options. It is expected that an optimal option of the nuclide management process can be derived from disposal perspective by applying the evaluation model. The mass flow between processing steps of the radionuclide management process is the basic quantity required to quantify the evaluation criteria. Therefore, we built a generalized block model on GoldSim, which can simulate mass flow of various radionuclide management process options. In addition to the mass flow, this model was established to derive the amount of wastes generated by each processing step, the composition of nuclides, and radiological properties (decay heat, radioactivity, etc.). The mass flow and waste property derived from the models are closely related to the factors that determine the area of disposal concepts. Based on this, a disposal area calculation model was established as a model to evaluate the effectiveness of the radionuclide management process on environmental burden reduction. For verification, three process options, which can manage radionuclides having high decay heat (Cs, Sr) or large volume (U), were selected and evaluated as reference processes. And two disposal options, deep geological disposal and deep borehole disposal concepts were considered to be linked with the processes. As a result, it was confirmed that the disposal area could be reduced in the process separating radionuclides having high decay heat. In the future, other evaluation models for economic viability and safety will be added in the GoldSim model.
        3.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        사용후 핵연료내 우라늄 및 초우란원소를 회수하는 파이로프로세싱 공정에서 배출되는 금속염화물계 방사성 폐기물은 높은 휘발특성과 붕규산계 유리와의 낮은 상용성으로 인해 고화처리가 쉽지 않은 폐기 물이다. 이를 위해, 본 연구에서는 고화처리의 한 방법으로 탈염화 반응을 통한 고화체제조 개념을 채택 하였다. 솔젤법을 이용하여 탈염화물질, SiO2-Al2O3-P2O5 (SAP)을 합성하였으며 이를 이용하여 탈염화 반 응거동 반응생성물의 고형화 특성을 조사하였다. LiCl계 폐기물과 달리, LiCl-KCl폐기물의 반응은 두 개 의 온도범위에서 반응이 진행되며, 400℃의 경우에는 LiCl이, 약 700℃에서는 KCl이 주로 반응하는 것으 로 확인되었다. 여러 가지 반응실험을 통하여 LiCl-KCl의 탈염화 반응에 가장 적합한 물질은 SAP 1071 (Si/Al/P=1/0.75/1 in molar)인 것으로 확인되었다. 4가지 종류의 고형화 실험을 통하여 고화체의 bulk shape과 densification은 SAP/Salt의 비에 영향 받는 것을 확인하였다. 제조된 고형화 시료는 Product Consistency Test-A법을 이용하여 기본적인 내구성을 평가하였다. 본 연구는 SiO2, Al2O3, P2O5 로 이루 어진 탈염화 물질을 이용하여 반응특성과 고형화 특성에 대한 기본적인 정보를 제공하였으며, 이와 같은 실험을 통하여, 본 연구에서 제안된 탈염화 고화처리방법이 휘발특성이 높고 기존 유리매질과 상용성이 낮은 금속염화물계 폐기물에 적용이 가능함을 확인하였다.
        4,000원
        4.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        금속염화물계 방사성 폐기물은 전해공정으로 이루어진 파이로프로세싱공정의 주요한 방사성 폐기물이 다. 이와 같은 폐기물은 탄산염이나 질산염과 달리 고온에서 분해되지 않고 바로 휘발되며, 기존의 규산 계 유리와 상용성이 낮아 처리가 쉽지 않다. 본 연구팀은 금속염화물계 폐기물을 고화처리하는 방법으로 탈염화처리법을 채택하였다. 본 연구에서는 그 후속적인 연구로서, 탈염화물질로 제안된 SAP (SiO2- Al2O3-P2O5)의 조성을 변화시켜 LiCl-KCl과의 반응성을 향상시키고 고화공정을 단순화시키고자 하였다. 기본물질계에 Fe2O3를 첨가할 경우 무게반응비 SAP/Salt를 3에서 2.25로 낮출수 있으며, Fe가 Al을 치환 하는 몰분율이 0.1이상이 될 경우에는 오히려 반응성이 점진적으로 감소하는 것으로 확인되었다. 또한 M-SAP에 B2O3를 첨가할 경우에는 유리매질을 사용하지 않고 monolithic form을 제조할 수 있었다. 침출 시험결과 U-SAP 1071이 가장 높은 내구성을 보여주었으며, 1 g의 금속폐기물을 처리시 약 3∼4 g의 고 화체가 발생되며, 이는 기존의 고화처리법보다 약 ⅓∼¼배정도 최종처분부피가 감소되는 효과를 얻을 수 있다. 이상의 실험결과로부터, 기존의 유리고화공정으로 처리가 어려운 휘발성 금속염화물계 폐기물 을 단 하나의 물질을 이용하여 처리할 수 있음을 확인하였으며, 이러한 처리방법은 고화처리시 발생되는 부피를 최소화활 수 있는 대안적인 고화처리방법이 될 것으로 판단된다.
        4,000원