In 1924, natural roack asphalt, which is called Asbuton, was found in South East Sulawesi, Buton Island, Indonesia. Since 2006, Asbuton has been widely applied on national road, provincial road and district roads not only for low volume traffic roads but also for the medium and heavy traffic roads. The use of Asbuton in Indonesian road infrastructure development is increasing because the deposits are estimated to be 677 million tons while current annual production is only approximately 20,000 tons. Asbuton mainly consist of asphalt and mineral like a Trinidad Lake Asphalt. The asphalt content of Asbuton is about 35% or less. Many researchers agreed that pure asphalt binder should be separated from its minerals of Asbuton in order for the conventional asphalt binder to be used widely and economically. Asbuton could replace the conventional asphalt binder. In this study, fundamental and reheological properties of pure asphalt binder extrcted from Asbuton are evauluated to find a possiblity to repalce it as the conventional asphalt binder. The first, pure asphalt binder extrcted from Asbuton through extraction process. Second, penetration test, softening point test, ductility test, and flash point test are conducted to measure physical properties of pure asphalt binder extrcted from Asbuton. Third, dynami shear rheometer (DSR) test, rolling thin film ovens(RTFO) test, pressure aging vessel(PAV) test, and bending beam rheometer(BBR) test are conducted to determine perfoemance grade as a reheological properties. Based on the limited laboratory test results, pure asphalt binder extrcted from would be possibly used as modified additive to improve physical properties and the performance grade at high tempertaure.
This study was conducted to evaluate light intensity and uniformity of two SMD (surface-mount device) type LEDs for protected crop production. A low-power (0.1 W) and a high-power (1 W) LEDs were selected and the intensity and uniformity was evaluated at different vertical (height) and horizontal (distance) intervals. When the horizontal interval of the LED bar was fixed,the light intensity increased and the uniformity decreased as the height decreased. At the 30~40 cm heights, 20~30% of the area showed 200 ±20 μmolm-2s-1. As the horizontal distance of the LED bars increased, while the uniformity increased as well, the light intensity decreased. At the distances of 6~10 cm, 17~23% of the area showed 200 ±20 μmolm-2s-1. When the LED bars were added to the sides, the light intensity and uniformity were generally improved. Results showed that the light intensity and uniformity depended on the height and interval of the LED bulbs; therefore, optimum arrangement for the crops interested should be determined through experiments.
This study was conducted to determine the major patent and analyze the patent trend of unmanned and automated agricultural production for the open field operation. As a result of conducting a search for patent applications related to these technologies, 1,080 valid patents were selected by evaluating the relevance of the patents and removing noise patents. As a result of the country-based analysis using the selected valid patents, it was found out that the largest number of patent applications were filed in the United States with 541 cases, followed by Japan with 326 cases, the European Union with 128 cases, and Korea with 85 cases. Upon classifying the valid patents into core technology, the path generation and tracking technology accounts for 33% with 353 cases; the implementing control with environmental condition technology accounts for 22% with 236 cases; the robot design technology accounts for 21% with 228 cases; the plant and environment sensing technology accounts for 19% with 206 cases; the yield and quality monitoring technology accounts for 5% with 58 cases. Finally, 10 core patents were selected by performing a patent index evaluation. The United States registered all of the 10 core patents. The results showed that Korea falls behind in the open field-related unmanned and automated agricultural production, compared to other developed agricultural countries.