검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The presence of tetracycline (TC) has been detected in the human living environment, and its complex structure makes it difficult to degrade. The green and efficient utilization of electroactivated persulfate advanced oxidation technology for the degradation of tetracycline remains a challenge. In this study, N-doped reduced graphene oxide (N-rGO) was prepared using a hydrothermal treatment method with urea as the nitrogen source. Four different mass ratios of graphene oxide (GO) to urea were synthesized, and the optimal mass ratio was determined through degradation experiments of tetracycline. The N-rGO/EC/PMS three-dimensional electrocatalytic system was constructed, and the influence of the experimental data on TC degradation, such as initial pH, PMS dosage and voltage, was determined. Characterization analysis using scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and other methods was conducted. The efficient catalytic ability of N-rGO was demonstrated through the generation of hydrogen peroxide ( H2O2) and consumption of peroxymonosulfate (PMS). The superiority of the three-dimensional (3D) electrochemical advanced oxidation process was proposed by combining different systems. Furthermore, the presence of hydroxyl radicals (.OH), persulfate radicals ( SO4 ·−), and singlet oxygen (1O2) was identified using electron spin resonance (ESR) technology. The utilization of N-rGO as a three-dimensional electrode, coupled with the advantages of PMS activation and electrochemical oxidation processes, is a promising method for treating organic pollutants in wastewater.
        4,800원
        2.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, nitric acid oxidation with varied treatment temperature and time was conducted on the surfaces of polyacrylonitrile- based ultrahigh modulus carbon fibers. Scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and surface tension/dynamic contact angle instruments were used to investigate changes in surface topography and chemical functionality before and after surface treatment. Results showed that the nitric acid oxidation of ultrahigh modulus carbon fibers resulted in decreases in the values of the crystallite thickness Lc and graphitization degree. Meanwhile, increased treating temperature and time made the decreases more obviously. The surfaces of ultrahigh modulus carbon fibers became much more activity and functionality after surface oxidation, e.g., the total surface energy of oxidized samples at 80 °C for 1 h increased by 27.7% compared with untreated fibers. Effects of surface nitric acid oxidation on the mechanical properties of ultrahigh modulus carbon fibers and its reinforced epoxy composites were also researched. Significant decreases happened to the tensile modulus of fibers due to decreased Lc value after the nitric acid oxidation. However, surface treatment had little effect on the tensile strength even as the treating temperature and processing time increased. The highest interfacial shear strength of ultrahigh modulus carbon fibers/epoxy composites increased by 25.7% after the nitric acid oxidation. In the final, surface oxidative mechanism of ultrahigh modulus carbon fibers in the nitric acid oxidation was studied. Different trends of the tensile strength and tensile modulus of fibers in the nitric acid oxidation resulted from the typical skin–core structure.
        4,500원