검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.05 구독 인증기관·개인회원 무료
        For the performance analysis of deep geological repository systems, numerical simulation with multi-physics is required, which specifically covers Thermal (T), Hydraulic (H), and Mechanical (M) behaviors in the disposal environment. Numerous simulation models have been developed so far, each of which varies in the approach and methodology for solving THM problems. Fully-coupled THM simulation codes such as ROCMAS, THAMES, and CODE_BRIGHT were mainly developed in the initial stage of DEvelopment of COupled models and their VALidation against EXperiments (DECOVALEX), with the advantage of thorough calculations consisting of correlated several variables on different physics. Due to the difficulty of solving the complex Jacobian Matrix and the following burden for the computational calculation, weakly-coupled THM models have been suggested in recent researches: TOUGH2-MP with FLAC3D, TOUGH2 with UDEC and OpenGeoSys with FLAC3D. This methodology of loose coupling allows the practical use of computational code optimized for each physics, thereby increasing the efficiency in simulation. However, these suggested models require two different numerical codes to calculate THM behaviors, which leads to several inherent issues: compatibility during maintenance, updating and dependency between two codes. In this study, therefore, the authors build a unified code for simulating THM behaviors in the deep geological repository. The concept involves the iterative sequential coupling between TH and M for calculation efficiency. As having developed the simulation code, High-level rAdiowaste Disposal Evaluation System (HADES), to describe TH behavior based on Multi-physics Object-Oriented Simulation Environment (MOOSE) software, the authors make a milestone to develop and couple the MOOSE-based new code for M behavior as Sub-app, with the previous HADES set to be Main-app. New model for M behavior will be verified with the benchmark case of DECOVALEX-THMC Task D, comparing the mechanical simulation results: stress evolution over time, profiles of stress and vertical displacement. The existing simulation results from HADES will also be updated with the coupled calculations, with regard to temperature and saturation. Additionally, the effective stress evolution can be assessed in terms of repository’s stability with Spalling Strength and Mohr-Coulomb failure criterion. This concept for new simulation model has its meaning in that it aims to demonstrate the specific methodology of loosely coupling multi-physics in unified simulation code and analyze THM complex interactions with considering mutual influence on various physics. It is expected that HADES can be renewed as an integral simulation model for deep geological repository systems by possessing the capacity for analyzing and assessing mechanical behavior.