To improve the proton conductivity of the proton exchange membranes (PEM), an amino derivative with sulfonic acid groups was used to modify graphene oxide (GO), resulting in sulfonated graphene oxide (S-GO), which was then incorporated into a perfluorinated sulfonic acid (PFSA) matrix to fabricate a PFSA/S-GO composite membranes. Elevating the doping concentration of S-GO within the composite membrane has resulted in enhanced proton conductivity, outperforming the baseline PFSA membrane across a range of temperatures. Notably, this conductivity ascended to 291.89 mS/cm when measured at 80 °C under conditions of 100% RH. Furthermore, the strong interface interaction between sulfonated graphene oxide and perfluorinated sulfonic acid polymer endowed the composite proton exchange membrane with excellent thermal stability and mechanical strength.