검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2022.10 구독 인증기관·개인회원 무료
        The safe, efficient and cost-effective decommissioning and dismantling of radioactive facilities requires the accurate characterization of the radionuclide activities and dose rate environment. And it is critical across many nuclear industries to identify and locate sources of radiation accurately and quickly. One of the more challenging aspects of dealing with radiation is that you cannot see it directly, which can result in potential exposure when working in those environments. Generally, semiconductor detectors have better energy resolution than scintillation detectors, but the maximum achievable count rates are limited by long pulse signals. Whereas some high pure germanium detectors have been developed to operate at high count rates, and these HPGe detectors could obtain gamma-ray spectra at high count rates exceeding 1 Mcps. However, HPGe detectors require cooling devices to reduce the leak currents, which becomes disadvantageous when developing portable radiation detectors. Furthermore, chemicalcompound semiconductor detectors made of cadmium telluride and cadmium zinc telluride are popular, because they have good energy resolution and are available at room temperature. However, CdTe and CZT detectors develop irradiation-induced defects under intense gamma-ray fields. In this Review, we start with the fundamentals of gamma rays detection and review the recent developments in scintillators gamma-ray detectors. The key factors affecting the detector performance are summarized. We also give an outlook on the field, with emphasis on the challenges to be overcome.
        8.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The original focus of this study was to investigate the immediate effects of lumbar rotational mobilization on the one-legged standing ability. Fifteen subjects (6 men and 9 women, mean age = 22.77 (SD = 1.21), mean height = 165.46cm (SD = 11.65), mean weight = 61.46kg (SD = 8.29) volunteers from healthy individuals were recruited and randomized to a lumbar rotational mobilization (LRM) group and a trunk rotational exercise (TRE) group. Mobilization (grade 3 or 4) was applied to the LRM group on the lumbar spine (L1 to L5) in a side-lying, and trunk twist exercise (left and right side) was applied the to the TRE group with lunge position. Center of pressure (COP) and the velocity of the center of pressure (VCOP) of each participant were measured as a balance ability through one leg standing position. Results are as follows. In within-group difference, the COP of the LRM group reduced during standing with the right foot, but the VCOP change of the LRM was not statistically significant. In between-groups difference, COP of TRE group was decreased compared with LRM group only during left leg standing in the eyes (p <.05). The results of this study suggest that LRM is more effective than TRE in improving balance ability.
        4,000원
        9.
        2016.03 구독 인증기관 무료, 개인회원 유료
        고성능 투명 전극의 개발은 유기 태양 전지, 유기 발광 다이오드와 같은 저가형 유연 유기 광전자 소자의 개발에 매우 중요하다. 가장 널리 쓰이고 있는 투명전극인 indium tin oxide (ITO)는 비싼 가격과 잘 깨어지는 특성 을 가지고 있어서 저가형 유연 전자 소자의 개발에 많은 제한을 주고 있으며, 이를 극복하기 위한 대체 투명 전극의 개발에 대한 연구가 활발히 진행되고 있다. 은 나노와이어(silver nanowire, AgNW)는 우수한 전기 전도도와 광 투과 도를 가지고 저렴하며 뛰어난 유연성 때문에 ITO의 대체 투명전극으로서 큰 각광을 받고 있다. 그러나 AgNW의 거 친 표면은 유기 광전자 소자의 누설전류를 크게 증가시켜서 소자의 효율을 떨어뜨리기 때문에 이를 극복하는 기술의 개발이 시급한 실정이다. 본 연구에서는 UV 광 경화성 접착제를 이용하여 AgNW를 PET기판으로 transfer 시키는 방법으로 AgNW가 매몰된 유연 전도성 투명 기판을 제작하였으며, 이 기판은 낮은 표면 거칠기, 낮은 면저항과 높은 광투과도를 보여준다. 본 연구에서 개발된 AgNW가 매몰된 유연 전도성 투명 기판은 유기전자소자의 대체투명전극 으로 활용될 수 있는 가능성을 보여준다.
        4,000원
        10.
        2014.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The application of software engineering is not common in the development of astronomical observation system. While there were component-wise developments in the past, large-scale comprehensive system developments are more common in these days. In this study, current methodologies of development are reviewed to select a proper one for the development of astronomical observation system and the result of the application is presented. As the subject of this study, a project of operation software development for an astronomical observation system which runs on the ground is selected. And the output management technique based on Component Based Development which is one of the relatively recent methodologies has been applied. Since the nature of the system requires lots of arithmetic algorithms and it has great impact on the overall performance of the entire system, a prototype model is developed to verify major functions and performance. Consequently, it was possible to verify the compliance with the product requirements through the requirement tracing table and also it was possible to keep to the schedule. Besides, it was suggested that a few improvements could be possible based on the experience of the application of conventional output management technique. This study is the first application of the software development methodology in the domestic astronomical observation system area. The process and results of this study would contribute to the investigation for a more appropriate methodology in the area of similar system development.