The formation of CaCO3 in microalgal culture is investigated and applied for effective separation of microalgae. The presence of several cationic ions in the culture medium mediates the formation of 3 types of mineral precipitates depending on the concentration of mineral precursors, Ca2+ and CO3 2−, amorphous nano-flakes, rhombohedral calcites, and spherical vaterites. While amorphous phased precipitates are formed for all concentrations of mineral precursor, only calcites are formed for 30 mM solutions of mineral precursor, and mixtures of calcites and vaterites are formed for 50 and 100 mM solutions of mineral precursor. The harvesting efficiency is also dependent on the concentration of the mineral precursor: from 90 % for 10 mM to 99 % for 100 mM after 60 mins’ of gravitational sedimentation. The formation of nano-flakes on the surface of microalgal cells induces the flocculation of microalgae by breaking the stable dispersion. The negatively charged surface of the microalgal cell is compatible not only with nano-flake attachment but also with the growth of calcitic crystals in which microalgal cells are embedded.
Microalgae produce not only lipids for biodiesel production but also valuable biochemicals which are often accumulated under cellular stress mediated by certain chemicals. While the microcarriers for the application of drug delivery systems for animal cells are widely studied, their applications into microalgal research or biorefinery are rarely investigated. Here we develope dual-functional magnetic microcapsules which work not only as flocculants for microalgal harvesting but also potentially as microcarriers for the controlled release of target chemicals stimulating microalgae to enhance the accumulation of valuable chemicals. Magnetic microcapsules are synthesized by layer-by-layer(LbL) coating of PSS-PDDA on Fe3O4 nanoparticle-embedded CaCO3 microparticles followed by removing CaCO3 sacrificial templates. The positively charged magnetic microcapsules flocculate microalgae by electrostatic interaction which are sequentially collected by the magnetophoretic separation. The microcapsules with a polycationic outer layer provide efficient binding sites for negatively charged microalgae and by that means are further utilized as a chemical-delivery and flocculation system for microalgal research and biorefineries.