The auroral observation has been started at Jang Bogo Station (JBS), Antarctica by using a visible All-sky camera (v-ASC) in 2018 to routinely monitor the aurora in association with the simultaneous observations of the ionosphere, thermosphere and magnetosphere at the station. In this article, the auroral observations are introduced with the analysis procedure to recognize the aurora from the v-ASC image data and to compute the auroral occurrences and the initial results on their spatial and temporal distributions are presented. The auroral occurrences are mostly confined to the northern horizon in the evening sector and extend to the zenith from the northwest to cover almost the entire sky disk over JBS at around 08 MLT (magnetic local time; 03 LT) and then retract to the northeast in the morning sector. At near the magnetic local noon, the occurrences are horizontally distributed in the northern sky disk, which shows the auroral occurrences in the cusp region. The results of the auroral occurrences indicate that JBS is located most of the time in the polar cap near the poleward boundary of the auroral oval in the nightside and approaches closer to the oval in the morning sector. At around 08 MLT (03 LT), JBS is located within the auroral oval and then moves away from it, finally being located in the cusp region at the magnetic local noon, which indicates that the location of JBS turns out to be ideal to investigate the variabilities of the poleward boundary of the auroral oval from long-term observations of the auroral occurrences. The future plan for the ground auroral observations near JBS is presented.
Korea Polar Research Institute (KOPRI) installed an ionospheric sounding radar system called Vertical Incidence Pulsed Ionospheric Radar (VIPIR) at Jang Bogo Station (JBS) in 2015 in order to routinely monitor the state of the ionosphere in the auroral oval and polar cap regions. Since 2017, after two-year test operation, it has been continuously operated to produce various ionospheric parameters. In this article, we will introduce the characteristics of the JBS-VIPIR observations and possible applications of the data for the study on the polar ionosphere. The JBS-VIPIR utilizes a log periodic transmit antenna that transmits 0.5–25 MHz radio waves, and a receiving array of 8 dipole antennas. It is operated in the Dynasonde B-mode pulse scheme and utilizes the 3-D inversion program, called NeXtYZ, for the data acquisition and processing, instead of the conventional 1-D inversion procedure as used in the most of digisonde observations. The JBS-VIPIR outputs include the height profiles of the electron density, ionospheric tilts, and ion drifts with a 2-minute temporal resolution in the bottomside ionosphere. With these observations, possible research applications will be briefly described in combination with other observations for the aurora, the neutral atmosphere and the magnetosphere simultaneously conducted at JBS.