Mediterranean fruit fly, Ceratitis capitata, is one of the most important quarantine pest worldwide. Fruit flies cause serious damage on orchard, and also can cause quarantine problem to fruit exportation. Recently, because of global warming, there is threats of fruit fly invasion to Korea, especially to Jeju island. So there should be a anticipative research about fruit fly control. Many physical quarantine treatment methods, like heat treatment and low-temperature treatment, are developed to control quarantine pests. Recent researches indicate that low-temperature treatment shows good efficacy on several quarantine pests without phytotoxicity. In this trial, we’ve applied the low-temperature treatment on citrus at laboratory and pilot scale containers to validate efficacy and phytotoxicity. Egg and larvae stage of C. capitata was completely controlled after 5 days and 8 days low-temperature treatment at 0℃ respectively, and there was no phytotoxicity on citrus. These results indicate that the low-temperature treatment can be applied to control fruit fly on citrus fruit.
Since methyl bromide(MB) has been designated as ozone deplete substance(ODS) by Montreal protocol (1989), many MBalternative fumigants like ethyl formate and phosphine gas were developed and commercialized. Ethyl formate(EF) is an effectiveMB alternative fumigant to control insect pests on imported fresh commodities. It is important to develop a proper evaporationmethod to apply EF on large scale fumigation because EF has a high boiling point(54℃). Recently, concurrent treatment ofethyl formate and nitrogen(EF+N2 treatment) has been newly developed. At preliminary test, EF+N2 treatment showed goodevaporation rate and showed high efficacy on quarantine pests without phytotoxicity on fresh commodities. In this trial, we’veapplied the EF+N2 treatment on imported orange and lemon at pilot scale (0.5m3, 10m3) containers and commercial scale containerto validate efficacy and phytotoxicity. 70g/m3 of EF liquid was applied on orange and lemon by EF+N2 treatment method,and showed 100% mortality on tested insect pest(Tetranychus urticae) without phytotoxicity at 0.5m3 and 10m3 scale fumigationtrials, respectively. At commercial scale trial, EF+N2 treatment also showed 100% efficacy on T. urticae and there was nophytotoxic symptoms on imported orange and lemon fruit. These results indicate that the newly developed EF+N2 treatmenthas a potential as a MB alternative, and can be applied on imported fresh commodities for quarantine and pre-shipment purpose.
The aim of this study was to determine the muscle activity of the abdominalis and erector spinae during bridging and unilateral bridging exercises on the firm surface, the sir-fit, and the foam roll. Eighteen healthy young subjects were recruited for this study. Surface electromyographic (EMG) activities were recorded from the both sides of the rectus abdominalis, external obliques, internal obliques, and erector spinae muscles during bridging and unilateral bridging-exercises. A one-way repeated analysis of variance was used to compare the EMG activity of each muscle according to the support surface condition. Differences in the EMG activities between the bridging and unilateral bridging exercises, and between the right and left side were assessed using a paired t-test. The study showed that the EMG activities of all of the muscles were significantly higher when the bridging exercise was performed using the foam roll or sit-fit than on the firm surface. The EMG activities of the right rectus abdominis, right external obliques, the right internal oblique, and both erector spinae were significantly higher during unilateral bridging ex exercise using the foam roll or the sit-fit than on the firm surface. The EMG activities of all of the muscles were significantly higher during the unilateral bridging exercise than during the bridging exercise. Based on these finding, performing the unilateral bridging exercise using the sit-fit or the foam roll is a useful method for facilitating trunk muscle strength and lumbar stability.