Despite evidence that bacteria-sensing Toll-like receptors (TLRs) are activated in salivary gland tissues of Sjogren syndrome (SS) patients, the role of oral bacteria in SS etiopathogenesis is unclear. We previously reported that two SS-associated oral bacteria, Prevotella melaninogenica (Pm) and Rothia mucilagenosa (Rm), oppositely regulate the expression of major histocompatibility complex class I (MHC I) in human salivary gland (HSG) cells. Here, we elucidated the mechanisms underlying the differential regulation of MHC I expression by these bacteria. The ability of Pm and Rm to activate TLR2, TLR4, and TLR9 was examined using TLR reporter cells. HSG cells were stimulated by the TLR ligands, Pm, and Rm. The levels of MHC I expression, bacterial invasion, and viability of HSG cells were examined by flow cytometry. The hypoxic status of HSG cells was examined using Hypoxia Green. HSG cells upregulated MHC I expression in response to TLR2, TLR4, and TLR9 activation. Both Pm and Rm activated TLR2 and TLR9 but not TLR4. Rm-induced downregulation of MHC I strongly correlated with bacterial invasion and cell death. Rm-induced cell death was not rescued by inhibitors of the diverse cell death pathways but was associated with hypoxia. In conclusion, Pm upregulated MHC I likely through TLR2 and TLR9 activation, while Rm-induced hypoxia-associated cell death and the downregulation of MHC I, despite its ability to activate TLR2 and TLR9. These findings may provide new insight into how oral dysbiosis can contribute to salivary gland tissue damage in SS.
This study aimed to investigate whether neurotransmitter receptors in the nervous system were also expressed in oral keratinocytes. Expressions of various neurotransmitter receptor genes in immortalized mouse oral keratinocyte (IMOK) cells were examined by reverse transcriptase polymerase chain reaction. IMOK cells expressed calcitonin gene-related peptide (CGRP) receptor subunit genes Ramp1 and Ramp3 and glutamate receptor subunit genes Grina , Gria3 , Grin1 , Grin2a , and Grin2d . Moreover, IMOK cells expressed Adrb2 and Chrna5 that encode beta 2 adrenergic receptor and cholinergic receptor nicotinic alpha 5 for sympathetic and parasympathetic neurotransmitters, respectively. The expression of Bdkrb1 and Ptger4 , which encode receptors for bradykinin and prostaglandin E2 involved in inflammatory responses, was also observed at low levels. Expressions of Ramp1 and Grina in the mouse gingival epithelium were also confirmed by immunohistochemistry. When the function of neurotransmitter receptors expressed on IMOK cells was tested by intracellular calcium response, CGRP, glutamate, and cholinergic receptors did not respond to their agonists, but the bradykinin receptor responded to bradykinin. Collectively, oral keratinocytes express several neurotransmitter receptors, suggesting the potential regulation of oral epithelial homeostasis by the nervous system.
Molecular mimicry is the most common mechanism that breaches self-tolerance. We previously identified autoantibodies to aquaporin-5 (AQP5) in the sera of patients with Sjögren’s syndrome and found that the aquaporin of Prevotella melaninogenica (PmAqp), an oral commensal, is highly homologous to human AQP5. This study aimed to test whether PmAqp can induce anti-AQP5 autoantibodies via molecular mimicry. From the amino acid sequence of PmAqp, an immunizing peptide; i.e., PmE-L, was designed, which contained both the B cell epitope “E” and T cell epitope. C57BL/6 and BALB/c mice were subcutaneously immunized with linear or cyclic forms of PmE-L emulsified in incomplete Freund’s adjuvant. The concentrations of the antibodies in sera were measured using enzymelinked immunosorbent assays. Both linear and cyclic PmE-L induced high levels of antibodies against not only the immunized peptides but also autoantibodies against AQP5E and antibodies against PmE, a Pm homolog of AQP5E. In C57BL/6 mice; however, the cyclic form of PmE-L was more efficient than the linear form in inducing autoantibodies against AQP5E that contained a cyclic epitope. The levels of anti-PmE antibodies and anti-AQP5E autoantibodies showed a strong positive correlation (r = 0.95, p < 0.0005), suggesting molecular mimicry. Collectively, the mice produced anti-AQP5E autoantibodies in response to a PmAqp-derived peptide. This model proved to be useful for studying the mechanisms of autoantibody production by molecular mimicry.
Recurrent aphthous stomatitis (RAS) is a common oral mucosal disorder for which no curative treatment is available. We previously reported that decreased Streptococcus salivarius and increased Acinetobacter johnsonii on the oral mucosa are associated with RAS risk. The purpose of this study was to identify antibiotics that selectively inhibit A. johnsonii but minimally inhibit oral mucosal commensals. S. salivarius KCTC 5512, S. salivarius KCTC 3960, A. johnsonii KCTC 12405, Rothia mucilaginosa KCTC 19862, and Veillonella dispar KCOM 1864 were subjected to antibiotic susceptibility test using amoxicillin, cefotaxime, gentamicin, clindamycin, and metronidazole in liquid culture. The minimal inhibitory concentration (MIC) was defined as the concentration that inhibits 90% of growth. Only gentamicin presented a higher MIC for A. johnsonii than MICs for S. salivarius and several oral mucosal commensals. Interestingly, the growth of S. salivarius increased 10~200% in the presence of sub-MIC concentrations of gentamicin, which was independent of development of resistance to gentamicin. In conclusion, gentamicin may be useful to restore RAS associated imbalance in oral microbiota by selectively inhibiting the growth of A. johnsonii but enhancing the growth of S. salivarius.
Chronic/cyclic neutropenia, leukocyte adhesion deficiency syndrome, Papillon-Lefèvre syndrome, and Chédiak-Higashi syndrome are associated with severe periodontitis, suggesting the importance of neutrophils in the maintenance of periodontal health. Various Toll-like receptor (TLR) ligands are known to stimulate neutrophil function, including FcR-mediated phagocytosis. In the present study, the effect of TLR2 activation on the non-opsonic phagocytosis of oral bacteria and concomitant production of reactive oxygen species (ROS) by human neutrophils was evaluated. Neutrophils isolated from peripheral blood were incubated with Streptococcus sanguinis or Porphyromonas gingivalis in the presence of various concentrations of Pam3CSK4, a synthetic TLR2 ligand, and analyzed for phagocytosis and ROS production by flow cytometry and chemiluminescence, respectively. Pam3CSK4 significantly increased the phagocytosis of both bacterial species in a dose-dependent manner. However, the enhancing effect was greater for S. sanguinis than for P. gingivalis. Pam3CSK4 alone induced ROS production in neutrophils and also increased concomitant ROS production induced by bacteria. Interestingly, incubation with P. gingivalis and Pam3CSK4 decreased the amounts of ROS, as compared to Pam3CSK4 alone, indicating the possibility that P. gingivalis survives within neutrophils. However, neutrophils efficiently killed phagocytosed bacteria of both species despite the absence of Pam3CSK4. Although P. gingivalis is poorly phagocytosed even by the TLR2-activated neutrophils, TLR2 activation of neutrophils may help to reduce the colonization of P. gingivalis by efficiently eliminating S. sanguinis , an early colonizer, in subgingival biofilm.
Although neutrophils function in both defense and tissue destruction, their defensive roles have rarely been studied in association with periodontitis. We hypothesized that periph¬eral neutrophils are pre-activated in vivo in periodontitis and that hyperactive neutrophils would show enhanced phago-cytic ability as well as an increased production of reactive oxygen species (ROS). Peripheral blood neutrophils from patients with aggressive periodontitis and age/gender¬matched healthy subjects (10 pairs) were isolated. The levels of CD11b and CD64 expression on the neutrophils and the level of plasma endotoxin were determined by flow cytometry and a limulus amebocyte lysate test, respectively. In addition, neutrophils were subjected to a flow cytometric phagocytosis assay and luminol-enhanced chemilumines¬cence for non-opsonized Fusobacterium nucleatum in parallel. The neutrophilsfrom most patients expressed increased levels of both CD11b and CD64. In addition, the plasma from these patients tended to contain a higher level of endotoxin than the healthy controls. In contrast, no differences were found between the two groups with regard to phagocytosis or ROS generation by F. nucleatum. The ability to phagocytose F. nucleatum was found to positively correlate with the ability to produce ROS. In conclusion, peripheral neutrophils from patients with aggressive periodontitis are hyperactive but not hyperreactive to F. nucleatum.
The sublingual locus has recently received great attention as a delivery site for various immunotherapies, including those that induce allergen-specific tolerance, and for vaccines that generate protective immunity. To further understand the immune functions of the human sublingual mucosa, we characterized the distribution of various immunocytes therein by immunohistochemistry. We identified professional antigen presenting cells (APCs), including Langerhans cells (LCs) and macrophages. CD1α+ and longerin+ LCs were further found to be distributed in the basal and supra-basal layers of the epithelium, and macrophages were identified in the lamina propria. HLA-DR+ cells were observed in both the epithelium and the lamina propria, which mirrors the tissue distribution of LCs and macrophages within these tissues. CD3+, CD4+, and CD8+ T cells were found to be distributed along the basal layer of the epithelium and also in the lamina propria. Although B cells, plasma cells, and Foxp3+ regulatory T cells (Tregs) were only occasionally observed in the human sublingual mucosa in the absence of inflammation, they did show enrichment at inflammatory sites. Hence, we have further elucidated the immune cell component distribution in human sublingual mucosa.
Innate immune response is initiated by the recognition of unique microbial molecular patterns through pattern recognition receptors (PRRs). The purpose of this study is to dissect the expression of various PRRs in gingival epithelial cells of differentiated versus undifferentiated states. Differentiation of immortalized human gingival epithelial HOK-16B cells was induced by culture in the presence of high Cα²+ at increased cell density. The expression levels of various PRRs in HOK-16B cells were examined by realtime reverse transcription polymerase chain reaction (RTPCR) and flow cytometry. In addition, the expression of human beta defensins (HBDs) was examined by real time RT-PCR and the amounts of secreted cytokines were measured by enzyme linked immunosorbent assay. In undifferentiated HOK-16B cells, NACHT-LRR-PYDcontaining protein (NALP) 2 was expressed most abundantly, and toll like receptor (TLR) 2, TLR4, nucleotide-binding oligomerization domain (NOD) 1, and NOD2 were expressed in substantial levels. However, TLR3, TLR7, TLR8, TLR9, ICE protease-activating factor (IPAF), and NALP6 were hardly expressed. In differentiated cells, the levels of NOD2, NALP2, and TLR4 were different from those in undifferentiated cells at RNA but not at protein levels. Interestingly, differentiated cells expressed the increased levels of HBD-1 and -3 but secreted reduced amount of IL-8. In conclusion, the repertoire of PRRs expressed by gingival epithelial cells is limited, and undifferentiated and differentiated cells express similar levels of PRRs.
We hypothesized that plaque-associated bacteria may have a role in maintenance of alveolar bone. To test it, immortalized gingival epithelial HOK-16B cells were co-cultured with live or lysed eight plaque bacterial species and the expression levels of bone morphogenetic protein (BMP)-2 and -4 were examined by real time reverse transcription-polymerase chain reaction. Un-stimulated HOK-16B cells expressed both BMP-2 and -4. Co-culture with plaque bacterial lysates had significant effects on the level of BMP-2 but not on that of BMP-4. Five species including Streptococcus sanguinis, S. gordonii, Veillonella atypica, Porphyromonas gingivalis, and Treponema denticola substantially up-regulated the level of BMP-2. In contrary to the upregulatory effect of lysate, live T. denticola suppressed the expression of BMP-2. In addition, in vitro osteoblastic differentiation assay using C2C12 cells and the conditioned medium of HOK-16B cells confirmed the production of BMPs by gingival epithelial cells and the modulation of BMP expression by the lysates of S. sanguinis and T. denticola. In conclusion, we have shown that plaque bacteria can regulate the expression of BMP-2 by gingival epithelial cells, the physiologic meaning of which needs further investigation.
The primary cause of periodontitis is plaque-associated anaerobic gram-negative bacteria. As shown in the patients with defects in the number or function of neutrophils, innate immunity plays an important role in resistance to bacterial infection and periodontitis. Toll-like receptor 4(TLR4) is one of the key receptors that recognize the molecular patterns of microbes and initiate innate immune response. To understand the role of TLR4 in the pathogenesis of periodontitis, we investigated whether Asp299Gly of TLR4 mutation is associated with periodontitis in Korean population. Subjects for this study included 90 healthy subjects and 98 periodontitis patients. The Asp299Gly mutation was screened by PCR-Restriction Fragment Length Polymorphism(RFLP) of genomic DNA from blood cells using a primer that creates a NcoI restriction site only in the mutant allele. The Asp299Gly mutation was not found in all subjects tested. Our results suggest that the Asp299Gly mutation of TLR4 is very rare in a Korean population. Further mutation screening may be required to determine the role of TLR4 in the pathogenesis of periodontitis.
Periodontitis is a multi-microbial disease and the comparison of a series of periodontopathogenic and non-periodontopathogenic bacteria in terms of microbe-host interaction may provide clues to understand the microbial etiology of the disease better. When we deal with twenty different bacterial species in a study, the first technical issue is how to measure the accurate concentration and use the same number of bacterial cells. We measured bacterial concentration by enumerating bacteria stained with SYTOX green for constant time using a flow cytometer and compared the results with those obtained by plate counting. Concentrations calculated by two different methods were very close. Therefore, flow cytometric counting allowed the rapid analysis of live/dead bacteria, offering the advantage of turbidity measurement and that of colony counting together.