검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2019.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        This paper suggests a relative orbit control strategy for the CubeSat Astronomy by NASA and Yonsei using Virtual Telescope Alignment eXperiment (CANYVAL-X) mission whose main goal is to demonstrate an essential technique, which is an arrangement among two satellites and a specific celestial object, referred to as inertial alignment, for a next-generation virtual space telescope. The inertial alignment system is a relative orbit control system and has requirements for the relative state. Through the proposed orbit control strategy, consisting of separation, proximity keeping, and reconfiguration, the requirements will be satisfied. The separation direction of the two CubeSats with respect to the orbital plane is decided to provide advantageous initial condition to the orbit controller. Proximity keeping is accomplished by differential atmospheric drag control (DADC), which generates acceleration by changing the spacecraft’s effective cross section via attitude control rather than consuming propellant. Reconfiguration is performed to meet the requirements after proximity keeping. Numerical simulations show that the requirements can be satisfied by the relative orbit control strategy. Furthermore, through numerical simulations, it is demonstrated that the inertial alignment can be achieved. A beacon signal had been received for several months after the launch; however, we have lost the signal at present.
        2.
        2018.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In a satellite gravimetry mission similar to GRACE, the precision of inter-satellite ranging is one of the key factors affecting the quality of gravity field recovery. In this paper, the impact of ranging precision on the accuracy of recovered geopotential coefficients is analyzed. Simulated precise orbit determination (POD) data and inter-satellite range data of formation-flying satellites containing white noise were generated, and geopotential coefficients were recovered from these simulated data sets using the crude acceleration approach. The accuracy of the recovered coefficients was quantitatively compared between data sets encompassing different ranging precisions. From this analysis, a rough prediction of the accuracy of geopotential coefficients could be obtained from the hypothetical mission. For a given POD precision, a ranging measurement precision that matches the POD precision was determined. Since the purpose of adopting inter-satellite ranging in a gravimetry mission is to overcome the imprecision of determining orbits, ranging measurements should be more precise than POD. For that reason, it can be concluded that this critical ranging precision matching the POD precision can serve as the minimum precision requirement for an on-board ranging device. Although the result obtained herein is about a very particular case, this methodology can also be applied in cases where different parameters are used.