검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        24.
        2007.11 KCI 등재 서비스 종료(열람 제한)
        Objectives Here, we report the effect of overexpression of ginseng farnesyl diphosphate synthase on the transcription of three key regulatory enzymes involved in triterpene metabolism in hairy root of ginseng and Centella asiatica (L.) Urban. Materials and Methods A four-year-old root of Panax ginseng C.A. Meyer and Centella asiatica (L.) Urban whole plants were obtained from National Institute of Crop Science (Suwon, Korea) and Chonnam National University (Gwangju, Korea), respectively. Agrobacterium rhizogenes R1000 strain was kindly provided by Dr. In (Nongwoo Bio, Yeju, Korea). Results and Discussion The role of farnesyl diphosphate synthase (FPS) in triterpene biosynthesis (Fig. 1) was investigated. A pCAMBIA3101 vector was used to insert a exogenous gene into target plant genome (Fig. 2). After the transformation, we produced Panax ginseng and Centella asiatica hairy roots by introducing the coding region of the gene from Panax ginseng. In these hairy roots, integration of the transgenes into the C. asiatica nuclear genome was confirmed by PCR analysis using PgFPS (P. ginseng FPS) primers and by Southern hybridization using PgFPS-specific probe. FPS specific activity is increased 4-fold compared to controls. In RT-PCR analysis, overexpression of PgFPS in hairy roots was observed (Fig. 3) and two genes, cycloartenol and beta-amyrin synthase, related to triterpene biosynthesis were up-regulated. These results suggest that FPS overexpression might lead to an enhanced biosynthesis of triterpene saponins and phytosterols. However, we did not demonstrate whether or not the introduction of PgFPS gene in Centella asiatica genome directly enhances triterpene saponin production, although our results showed that gene expression related to triterpene saponin biosynthesis were obviously up-regulated. Therefore, additional experiments such as overexpression of FPS gene in triterpene saponin-deficient mutant plants will be required.
        1 2