This paper presents an electrochemical immunosensor using a graphene/multi-walled carbon nanotube (MWCNT) composite platform for detecting the cardiovascular marker C-reactive protein (CRP). The immunosensor exhibited a linear detection range of 0.20–100 ng/mL CRP with a low limit of detection reaching 0.081 ng/mL. The composite material provided a 3D porous structure that allowed efficient antibody immobilization and minimized steric hindrance. The sensor showed high specificity, with minimal response to interfering substances. Using differential pulse voltammetry, the immunosensor demonstrated exceptional precision, rapid detection, and a direct correlation between CRP concentration and sensor response current. Overall, this work highlights the potential of the graphene/MWCNT composite platform as a robust tool for early CRP detection and cardiovascular disease risk assessment. The immunosensor provides sensitive and selective CRP quantification that could enable timely clinical intervention for at-risk individuals.