family in the Brassica genome sequences by computational approach. The MITE family showed a total of 264bp length including 36bp terminal inverted repeats and remained 2bp (TA) targets it eduplication by its insertion. By searching the genome database of Brassica species, 516, 227, and 15 members were identified from 470Mbp of Brassica oleraceae, 154Mbp of B.rapa and 15Mbp of B.napus, respectively, indicating that there are approximately 692, 760, 1235 copies in B.oleracea, B.rapa and B.napus genomes,respectively. A total of 225 relatively intact MITE members, 146,68, and 11 members, which showed >80% sequence similarity and sequence coverage were identified and retrieved for MITE analysis from B.oleracea, B.rapa and B.napus genomes, respectively. Out of 225 MITE family members 159 having full structure of MITE and 66 having the truncated end either in right TIR or left TIR. Insertion polymorphism due to insertion or non-insertion of MITEs showed high level of polymorphism among accessions intra and inter species of Brassica. The new MITE would provide abetter tool for study molecular breeding in Brassica species and also helpful to understand their contribution in evolution and diversification of the highly duplicated Brassica genome.