검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        1998.10 구독 인증기관·개인회원 무료
        2.
        2019.01 KCI 등재 서비스 종료(열람 제한)
        This study investigates the performance of four Bayesian methods, Random Walk Metropolis (RWM), Hit-And-Run Metropolis (HARM), Adaptive Mixture Metropolis (AMM), and Population Monte Carlo (PMC), for estimating the parameters and uncertainties of probability rainfall distribution, and the results are compared with those of conventional parameter estimation methods; namely, the Method Of Moment (MOM), Maximum Likelihood Method (MLM), and Probability Weighted Method (PWM). As a result, Bayesian methods yield similar or slightly better results in parameter estimations compared with conventional methods. In particular, PMC can reduce parameter uncertainty greatly compared with RWM, HARM, and AMM methods although the Bayesian methods produce similar results in parameter estimations. Overall, the Bayesian methods produce better accuracy for scale parameters compared with the conventional methods and this characteristic improves the accuracy of probability rainfall. Therefore, Bayesian methods can be effective tools for estimating the parameters and uncertainties of probability rainfall distribution in hydrological practices, flood risk assessment, and decision-making support.