In this study, we used coal-based activated carbons and charcoal as startingmaterials, phenolic resin (PR) as a binder, and TOS as a titanium source to prepare TiO2 combining spherical shaped activated carbon photocatalysts. The textural properties of the activated carbon photocatalysts (SACP) were characterized by specific surface area (BET), energy dispersive X-ray spectroscopy (XRD), scanning electron microscopy (SEM), iodine adsorption, strength intensity, and pressure drop. The photocatalytic activities of the SACPs were characterized by degradation of the organic dyes Methylene Blue (MB), Methylene Orange (MO), and Rhodamine B (Rh. B) and a chemical oxygen demand (COD) experiment. The surface properties are shown by SEM. The XRD patterns of the composites showed that the SACP composite contained a typical single, clear anatase phase. The EDX spectro for the elemental indentification showed the presence of C and O with Ti peaks. According to the results, the spherical activated carbon photocatalysts sample of AOP prepared with activated carbon formed the best spherical shape, a high BET surface area, iodine adsorption capability and strength value, and the lowest pressure drop, and the photocatalytic activity was better than samples prepared with charcoal. We compared the degradation effects among three kinds of dyes. MB solution degraded with the SACP is better than any other dye solutions.
The composite photocatalysts of a Fe-modified carbon nanotube (CNT)-TiO2 were synthesized by a two-step sol-gel method at high temperature. Its chemical composition and surface properties were investigated by BET surface area, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that the BET surface area was improved by modification of Fe, which was related to the adsorption capacity for each composite. Interesting thin layer aggregates of nanosized TiO2 were observed from TEM images, probably stabilized by the presence of CNT, and the surface and structural characterization of the samples was carried out. The XRD results showed that the Fe/CNT-TiO2 composites contained a mix of anatase and rutile forms of TiO2 particles when the precursor is TiOSO4·xH2O (TOS). An excellent photocatalytic activity of Fe/CNT-TiO2 was obtained for the degradation of methylene blue (MB) under visible light irradiation. It was considered that Fe cation could be doped into the matrix of TiO2, which could hinder the recombination rate of the excited electrons/holes. The photocatalytic activity of the composites was also found to depend on the presence of CNT. The synergistic effects among the Fe, CNT and TiO2 components were responsible for improving the visible light photocatalytic activity.
In this paper, Fe-TiO2 and Fe-fullerene/TiO2 composite photocatalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. TiO2, Fe-TiO2 and Fe-fullerene/TiO2 were characterized by scanning electron microscopy (SEM), Transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic oxidation of methylene blue (MB) solution. XRD patterns of the composites showed that the photocatalyst composite contained a typical single and clear anatase phase. The surface properties shown by SEM presented a characterization of the texture on Fe-fullerene/TiO2 composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of O, C and Ti elements. Moreover, peaks of the Fe element were observed in the Fe-TiO2 and Fe-fullerene/TiO2 composites. The degradation of MB solution by UV-light irradiation in the presence of photocatalyst compounds was investigated in complete darkness. The degradation of MB concentration in aqueous solution occurred via three kinds of physical phenomena: quantum efficiency of the fullerene; organo-metallic reaction of the Fe compound; and decomposition of TiO2. The degradation rate of the methylene blue solution increased when using Fe-fullerene/TiO2 compounds.
Titanium dioxide (TiO2) particles deposited on different quantitative Fe-treated carbon nanotube (CNT) composites with high photocatalytic activity of visible light were prepared by a modified sol-gel method using TNB as a titanium source. The composites were characterized by BET, XRD, SEM, TEM and EDX, which showed that the BET surface area was related to the adsorption capacity for each composite. From TEM images, surface and structural characterization of for the CNT surface had been carried out. The XRD results showed that the Fe-ACF/TiO2 composite mostly contained an anatase structure with a Fe-mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in the Fe-CNT/TiO2 composites. The photocatalytic activity of the composites was examined by degradation of methylene blue (MB) in aqueous solution under visible light, which was found to depend on the amount of CNT. The highest photocatalytic activity among the different composites was related to the optimal content of CNT in the Fe-CNT/TiO2 composites. In particular, the photocatalytic activity of the Fe-CNT/TiO2 composites under visible light was better than that of the CNT/TiO2 composites due to the introduction of Fe particles.
Methylene blue (MB) was degraded by TiO2 and ZnO deposited on an activated carbon fiber (ACF) surface under UV light. The ACF/TiO2 and ACF/ZnO composites were characterized by BET, SEM, XRD, and EDX. The BET surface area was related to the adsorption capacity for composites. The SEM results showed that titanium dioxide and zinc oxide are distributed on the ACF surface. The XRD results showed that the ACF/TiO2 and ACF/ZnO composites contained a unique anatase structure for TiO2 and a typical hexagonal phase for ZnO respectively. These EDX spectra showed the presence of peaks of Ti element on ACF/TiO2 composite and peaks of Zn element on the ACF/ZnO composite. The blank experiments for either illuminating the MB solution or the suspension containing ACF/TiO2 or ACF/ZnO in the dark showed that both illumination and the catalyst were necessary for the mineralization of organic dye. Additionally, the ACF/TiO2 composites proved to be efficient photocatalysts due to degradation of MB at higher reaction rates. The addition of an oxidant ([NH4]2S2O8) led to an increase of the degradation rate of MB for ACF/TiO2 and ACF/ZnO composites.
In this study, the effects of silver treatment and activation on the physical and chemical properties of spherical activated carbon (SAC) were studied. The textural properties of SAC were characterized by BET surface area, XRD, SEM, iodine adsorption, strength intensity, pressure drop and antibacterial effects. BET surface areas of SACs decreased with an increase of the amount of PR before and after activation, and the BET surface areas of SACs were found to be about 2-3 times the size of those before activation. The XRD patterns showed their existing state as stable Ag crystals and carbon structure. The Ag particles are seaweedlike and uniform, being approximately 5-10 μm in size deposited on the surface of activated carbon. All of the samples had much more iodine adsorption capability after activation than before activation. The strength values of SACs increased with an increase of the amount of PR, and there was a smaller drop in the strength values of SACs with silver treatment than with non-silver treatment after activation. The Ag-SAC composites showed strong antibacterial activity against Escherichia coli (E. Coli).
The photocatalysts of Fe-ACF/TiO2 compositeswere prepared by the sol-gel method and characterizedby BET, XRD, SEM, and EDX. It showed that the BET surface area was related to adsorption capacity foreach composite. The SEM results showed that ferric compound and titanium dioxide were distributed on thesurfaces of ACF. The XRD results showed that Fe-ACF/TiO2 composite only contained an anatase structurewith a Fe mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in Fe-ACF/TiO2 composites. From the photocataytic degradation effect, TiO2 on activated carbon fiber surface modifiedwith Fe (Fe-ACF/TiO2) could work in the photo-Fenton process. It was revealed that the photo-Fenton reactiongives considerable photocatalytic ability for the decomposition of methylene blue (MB) compared to non-treatedACF/TiO2, and the photo-Fenton reaction was improved by the addition of H2O2. It was proved that thedecomposition of MB under UV (365nm) irradiation in the presence of H2O2 predominantly accelerated theoxidation of Fe2+ to Fe3+ and produced a high concentration of OH. radicals.