A novel kind of self-assembled graphene quantum dots-Co3O4 (GQDs-Co3O4) nanocomposite was successfully manufactured through a hydrothermal approach and used as an extremely effectual oxygen evolution reaction (OER) electrocatalyst. The characterization of morphology with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that Co3O4 nanosheets combined with graphene quantum dots (GQDs) had a new type of hexagonal lamellar selfassembly structure. The GQDs-Co3O4 electrocatalyst showed enhanced electrochemical catalytic properties in an alkaline solution. The start potential of the OER was 0.543 V (vs SCE) in 1 M KOH solution, and 0.577 V (vs SCE) in 0.1 M KOH solution correspondingly. The current density of 10 mA cm− 2 had been attained at the overpotential of 321 mV in 1 M KOH solution and 450 mV in 0.1 M KOH solution. Furthermore, the current density can reach 171 mA cm− 2 in 1 M KOH solution and 21.4 mA cm− 2 in 0.1 M KOH solution at 0.8 V. Moreover, the GQDs-Co3O4 nanocomposite also maintained an ideal constancy in an alkaline solution with only a small deterioration of the activity (7%) compared with the original value after repeating potential cycling for 1000 cycles.
Large-size graphene samples are successfully prepared by combining ultrosonic assisted liquid phase exfoliation process with oxidation-deoxidation method. Different from previous works, we used an ultrasound-treated expanded graphite as the raw material and prepared the graphene via a facile oxidation-reduction reaction. Results of X-ray diffraction and Raman spectroscopy confirm the crystal structure of the as-prepared graphene. Scanning electron microscopy images show that this kind of graphene has a large size (with a diameter over 100 μm), larger than the graphene from graphite powder and flake graphite prepared through single oxidation-deoxidation method. Transmission electron microscopy results also reveal the thin layers of the prepared graphene (number of layers ≤3). Furthermore, the importance of preprocessing the raw materials is also proven. Therefore, this method is an attractive way for preparing graphene with large size.